
- •1.Векторы. Линейные операции над ними. Зависимость векторов. Базис. Декартова система координат. Деление отрезка в данном отношении.
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •2.Различные формы произведения векторов. Условие ортогональности, коллинеарности и компланарности векторов. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •3.Определители второго и третьего порядка и их свойства. Определители n-го порядка и их свойства.
- •Свойства определителя n-го порядка Свойство 1. При замене строк столбцами (транспонировании) значение определителя не изменится
- •4.Матрицы и линейные операции над ними. Произведение матриц, обратная матрица. Ранг матрицы.
- •Операции над матрицами
- •5.Системы линейных алгебраических уравнений, общие понятия. Различные методы решения.
- •Решение систем линейных уравнений методом Гаусса. Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •6.Произвольные системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Критерий совместности системы линейных уравнений
- •Однородные системы уравнений
- •8.Евклидовы пространства. Норма вектора. Ортонормированный базис. Процесс ортогонализации. Неравенство Коши-Буняковского.
- •2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:
- •(Неравенство треугольника);
- •3. Нормальные операторы в евклидовом пространстве.
- •11.Кривая на плоскости. Уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Виды кривых второго порядка.
- •12.Кривые и поверхности в пространстве. Различные уравнения плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой или плоскости. Угол между плоскостями и прямыми.
- •13.Квадратичные формы, приведение их к каноническому виду. Знакоопределенность форм. Критерий Сильвестра. Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- •15.Элементы теории множеств и математической логики. Действительные числа. Грани. Понятие функции. Обратная функция.
- •16.Понятие последовательности и ее предела. Бесконечно малые. Свойства пределов. Монотонные последовательности. Число «е».
- •Бесконечный предел
- •17.Предел функции. Понятие непрерывности и свойства функций, непрерывных в точке. Точки разрыва. Замечательные пределы. Сравнение бесконечно малых. Непрерывность функции
- •Точки разрыва
- •18.Функции, непрерывные на отрезке, и их свойства. Равномерная непрерывность. Равномерная непрерывность
- •19.Понятие производной, ее геометрический и физический смысл. Основные правила дифференцирования. Таблица производных.
- •1) Физический смысл производной.
- •2) Геометрический смысл производной.
- •Правила дифференцирования
- •20.Дифференциал и его применения. Производные и дифференциалы высших порядков. Производные высших порядков
- •22.Правило Лопиталя и формула Тейлора.
- •2.Существует конечный или бесконечный предел . Тогда: .
- •23.Исследование функции на экстремум, монотонность и точки перегиба функции. Монотонность функции
- •Выпуклость и перегибы графика функции
- •Локальный экстремум
- •Глобальный экстремум
- •24.Свойства комплексных чисел. Разложение многочленов на множители. Представление рациональной функции в виде суммы элементарных дробей.
- •26.Интегрирование рациональных функций, некоторых иррациональностей и тригонометрических выражений. Интегрирование рациональных функций. Метод рационализации
- •Основные правила интегрирования
- •29.Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов
- •Несобственные интегралы
8.Евклидовы пространства. Норма вектора. Ортонормированный базис. Процесс ортогонализации. Неравенство Коши-Буняковского.
Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3.
В
современном понимании, в более общем
смысле, может обозначать один из сходных
и тесно связанных объектов, определённых
ниже. Обычно
-мерное
евклидово пространство обозначается
,
хотя часто используется не вполне
приемлемое обозначение
.
1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство с введённым на нём (положительно определенным) скалярным произведением, порождающим норму:
,
в простейшем случае (евклидова норма):
где
(в
евклидовом пространстве всегда можно
выбрать базис,
в котором верен именно этот простейший
вариант).
2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:
,
где
и
.
3.
Вообще любое предгильбертово
пространство (пространство
со скалярным произведением
).
Норма
вектора[править | править
исходный текст]
Норма
в векторном
пространстве
над полем вещественных или комплексных
чисел —
это функционал
,
обладающий следующими свойствами:
(Неравенство треугольника);
Эти условия являются аксиомами нормы.
Векторное пространство с нормой называется нормированным пространством, а условия (1-3) — также аксиомами нормированного пространства.
Нетрудно видеть, что из аксиом нормы вытекает свойство неотрицательности нормы:
Действительно:
Из
3 получаем, что
.
Теперь из 2 получаем
.
Таким образом,
.
Чаще
всего норму обозначают в виде:
.
В частности,
—
это норма элемента
векторного
пространства
.
Вектор
с единичной нормой (
)
называется нормальным или нормированным.
Любой
ненулевой вектор
можно нормировать,
то есть разделить его на свою норму:
вектор
имеет
единичную норму. С геометрической точки
зрения это значит, что мы берем
сонаправленный вектор единичной длины.
Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.
Последнее удобно записывается при помощи символа Кронекера:
9.Линейные
операторы. Их свойства и действия над
ними. Обратный оператор. Преобразование
матрицы линейного оператора. Подобные
матрицы.
Линейным
преобразованием (линейным оператором)
линейного пространства
называется
линейное отображение
пространства
в
себя.
Поскольку линейное преобразование является частным случаем линейного отображения, к нему применимы все понятия и свойства, рассмотренные для отображений: инъективность, сюръективность, биективность, обратимость, ядро, образ, дефект, ранг и т.д.
Матрицей
линейного оператора (преобразования)
в
базисе
пространства
называется
квадратная матрица
,
составленная из координатных столбцов
образов базисных векторов
,
найденных относительно базиса
.
Матрица биективного линейного оператора (преобразования) обратима, т.е. невырождена. Поэтому биективное (обратимое) преобразование называют также невырожденным.
10.Линейные операторы в евклидовом пространстве. Сопряженные и самосопряженные операторы. Собственные векторы и собственные значения. Канонический вид матрицы. Операторы в евклидовом пространстве и их продолжение на комплексификацию.
В евклидовом пространстве для оператора 9 определяется сопряженный оператора 10 той же формулой 11 при любых х и у, что и в унитарном пространстве. Доказательство существования и единственности сопряженного оператора ничем не отличается от аналогичных доказательств для унитарного пространства. Матрица оператора 12 в ортонормальном базисе просто транспонирована с матрицей оператора 13 При продолжении взаимно сопряженных операторов 14 с S на 15 они останутся сопряженными.
Действительно,