Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MATEMATIKA_OTVETY.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
579.49 Кб
Скачать

Метод Гаусса

Метод Гаусса основан на теореме: если к некоторому уравнению системы прибавить другое уравнение этой системы, умноженное на любое действительное число, или умножить любое уравнение системы на отличное от нуля действительное число, то полученная система будет эквивалентна исходной.

Метод Гаусса называют также методом последовательного исключения неизвестных, осуществляя его за несколько итераций. На каждой итерации выбирается разрешающее уравнение и базисное неизвестное. В качестве разрешающего уравнения можно взять любое уравнение системы, которое ранее не было выбрано разрешающим и не все коэффициенты которого равны нулю. За базисное неизвестное выбирают неизвестное, коэффициент при котором в разрешающем уравнении, называемый разрешающим коэффициентом, не равен нулю.

Алгоритм метода следующий:

1.Выбирают разрешающее уравнение и базисное неизвестное.

2.Делят обе части разрешающего уравнения на разрешающий коэффициент и исключают базисное неизвестное из всех уравнений системы, кроме разрешающего. Отбрасывают, если они появились, уравнения, все коэффициенты и свободный член в котором равны нулю. Если получилось уравнение, в котором коэффициенты нулевые, а свободный член не нуль, то система несовместна, конец. Если таких уравнений нет, то шаг 1. Если все уравнения были использованы в качестве разрешающих, то шаг 3.Если нет, то шаг 1.

4.Базисные неизвестные оставляют слева, а небазисные (назовем их свободными, так как они могут принимать любые значения) переносят вправо. Тем самым получено общее решение системы.

6.Произвольные системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.

Однородные системы. Фундаментальная система решений. Неоднородные системы.

Критерий совместности системы линейных уравнений

Ответ на первый вопрос дает теорема Кронекера-Капелли – критерий совместности системы линейных уравнений.

Теорема. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу ее расширенной матрицы.

Однородные системы уравнений

Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема. Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных.

Доказательство: Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1: Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство: Если у системы уравнений , то ранг системы не превышает числа уравнений , т.е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2: Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство: Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т.е. .

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.

Однородная система линейных алгебраических уравнений.

Система m линейных ур-ий с n переменными называется системой линейных однородных уравнений, если все свободные члены равны 0. Система линейных однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое решение тогда и только тогда, когда ранг её матрицы коэффициентов при переменных меньше числа переменных, т.е. при rang A ( n. Всякая лин. комбинация

решений системы лин. однородн. ур-ий также является решением этой системы.

Система лин.независимых решений е1, е2,…,еk называется фундаментальной, если каждое решение системы является линейной комбинацией решений. Теорема: если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений меньше числа переменных n, то всякая фундаментальная система решений системы состоит из n-r решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид: с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы m линейных ур-ий с n переменными равно сумме

общего решения соответствующей ей системы однородн. линейных ур-ий и произвольного частного решения этой системы.

7.Линейные пространства. Подпространства. Базис, размерность. Линейная оболочка. Линейное пространство   называется n-мерным, если в нем существует система из   линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число  называется размерностью (числом измерений) линейного пространства   и обозначается  . Другими словами, размерность пространства — это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве   найдется система, состоящая из   линейно независимых векторов, то такое пространство называют бесконечномерным (записывают:  ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность   линейно независимых векторов (базисных векторов).

Теорема 8.1 о разложении вектора по базису. Если   — базис n-мерного линейного пространства  , то любой вектор   может быть представлен в виде линейной комбинации базисных векторов:

V=v1*e1+v2*e2+…+vn+en и притом единственным образом, т.е. коэффициенты   определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства   равна  . Система векторов   линейно независима (это базис). После присоединения к базису любого вектора  , получаем линейно зависимую систему   (так как это система состоит из   векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

В самом деле, в пространстве   имеется система   линейно независимых векторов, а любая система   из большего количества векторов   линейно зависима, поскольку каждый вектор из этой системы линейно выражается через векторы  . Значит,   и   — базис  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]