
- •1.Векторы. Линейные операции над ними. Зависимость векторов. Базис. Декартова система координат. Деление отрезка в данном отношении.
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •2.Различные формы произведения векторов. Условие ортогональности, коллинеарности и компланарности векторов. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •3.Определители второго и третьего порядка и их свойства. Определители n-го порядка и их свойства.
- •Свойства определителя n-го порядка Свойство 1. При замене строк столбцами (транспонировании) значение определителя не изменится
- •4.Матрицы и линейные операции над ними. Произведение матриц, обратная матрица. Ранг матрицы.
- •Операции над матрицами
- •5.Системы линейных алгебраических уравнений, общие понятия. Различные методы решения.
- •Решение систем линейных уравнений методом Гаусса. Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •6.Произвольные системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Критерий совместности системы линейных уравнений
- •Однородные системы уравнений
- •8.Евклидовы пространства. Норма вектора. Ортонормированный базис. Процесс ортогонализации. Неравенство Коши-Буняковского.
- •2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:
- •(Неравенство треугольника);
- •3. Нормальные операторы в евклидовом пространстве.
- •11.Кривая на плоскости. Уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Виды кривых второго порядка.
- •12.Кривые и поверхности в пространстве. Различные уравнения плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой или плоскости. Угол между плоскостями и прямыми.
- •13.Квадратичные формы, приведение их к каноническому виду. Знакоопределенность форм. Критерий Сильвестра. Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- •15.Элементы теории множеств и математической логики. Действительные числа. Грани. Понятие функции. Обратная функция.
- •16.Понятие последовательности и ее предела. Бесконечно малые. Свойства пределов. Монотонные последовательности. Число «е».
- •Бесконечный предел
- •17.Предел функции. Понятие непрерывности и свойства функций, непрерывных в точке. Точки разрыва. Замечательные пределы. Сравнение бесконечно малых. Непрерывность функции
- •Точки разрыва
- •18.Функции, непрерывные на отрезке, и их свойства. Равномерная непрерывность. Равномерная непрерывность
- •19.Понятие производной, ее геометрический и физический смысл. Основные правила дифференцирования. Таблица производных.
- •1) Физический смысл производной.
- •2) Геометрический смысл производной.
- •Правила дифференцирования
- •20.Дифференциал и его применения. Производные и дифференциалы высших порядков. Производные высших порядков
- •22.Правило Лопиталя и формула Тейлора.
- •2.Существует конечный или бесконечный предел . Тогда: .
- •23.Исследование функции на экстремум, монотонность и точки перегиба функции. Монотонность функции
- •Выпуклость и перегибы графика функции
- •Локальный экстремум
- •Глобальный экстремум
- •24.Свойства комплексных чисел. Разложение многочленов на множители. Представление рациональной функции в виде суммы элементарных дробей.
- •26.Интегрирование рациональных функций, некоторых иррациональностей и тригонометрических выражений. Интегрирование рациональных функций. Метод рационализации
- •Основные правила интегрирования
- •29.Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов
- •Несобственные интегралы
29.Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов
Задача
вычисления определенного интеграла
не всегда может быть сведена к
первообразной, поэтому разработаны
численные методы, которые позволяют
найти значение интеграла с достаточно
высокой точностью. Суть этих методов
– в замене подынтегральной функции
интерполяционным многочленом. При этом
возникает альтернативный выбор:
осуществить замену подынтегральной
функции одним интерполяционным
многочленом высокой степени, описывающим
изменение функции на всем интервале
интегрирования
.
Несобственные интегралы
При рассмотрении задачи интегрирования непрерывных и кусочно-непрерывных функций предполагалось, что эти подынтегральные функции являются ограниченными на отрезке интегрирования , а сам отрезок является конечным. Постановка задачи интегрирования возможна, когда одно из этих условий или оба они нарушены. В этом случае интегралы называются несобственными, а задача интегрирования формулируется несколько иначе. Рассмотрим оба случая:
Подынтегральная функция неограниченна;
Промежуток интегрирования бесконечен