
- •1.Векторы. Линейные операции над ними. Зависимость векторов. Базис. Декартова система координат. Деление отрезка в данном отношении.
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •2.Различные формы произведения векторов. Условие ортогональности, коллинеарности и компланарности векторов. Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •3.Определители второго и третьего порядка и их свойства. Определители n-го порядка и их свойства.
- •Свойства определителя n-го порядка Свойство 1. При замене строк столбцами (транспонировании) значение определителя не изменится
- •4.Матрицы и линейные операции над ними. Произведение матриц, обратная матрица. Ранг матрицы.
- •Операции над матрицами
- •5.Системы линейных алгебраических уравнений, общие понятия. Различные методы решения.
- •Решение систем линейных уравнений методом Гаусса. Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •6.Произвольные системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Критерий совместности системы линейных уравнений
- •Однородные системы уравнений
- •8.Евклидовы пространства. Норма вектора. Ортонормированный базис. Процесс ортогонализации. Неравенство Коши-Буняковского.
- •2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:
- •(Неравенство треугольника);
- •3. Нормальные операторы в евклидовом пространстве.
- •11.Кривая на плоскости. Уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Виды кривых второго порядка.
- •12.Кривые и поверхности в пространстве. Различные уравнения плоскости. Уравнение прямой в пространстве. Расстояние от точки до прямой или плоскости. Угол между плоскостями и прямыми.
- •13.Квадратичные формы, приведение их к каноническому виду. Знакоопределенность форм. Критерий Сильвестра. Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
- •15.Элементы теории множеств и математической логики. Действительные числа. Грани. Понятие функции. Обратная функция.
- •16.Понятие последовательности и ее предела. Бесконечно малые. Свойства пределов. Монотонные последовательности. Число «е».
- •Бесконечный предел
- •17.Предел функции. Понятие непрерывности и свойства функций, непрерывных в точке. Точки разрыва. Замечательные пределы. Сравнение бесконечно малых. Непрерывность функции
- •Точки разрыва
- •18.Функции, непрерывные на отрезке, и их свойства. Равномерная непрерывность. Равномерная непрерывность
- •19.Понятие производной, ее геометрический и физический смысл. Основные правила дифференцирования. Таблица производных.
- •1) Физический смысл производной.
- •2) Геометрический смысл производной.
- •Правила дифференцирования
- •20.Дифференциал и его применения. Производные и дифференциалы высших порядков. Производные высших порядков
- •22.Правило Лопиталя и формула Тейлора.
- •2.Существует конечный или бесконечный предел . Тогда: .
- •23.Исследование функции на экстремум, монотонность и точки перегиба функции. Монотонность функции
- •Выпуклость и перегибы графика функции
- •Локальный экстремум
- •Глобальный экстремум
- •24.Свойства комплексных чисел. Разложение многочленов на множители. Представление рациональной функции в виде суммы элементарных дробей.
- •26.Интегрирование рациональных функций, некоторых иррациональностей и тригонометрических выражений. Интегрирование рациональных функций. Метод рационализации
- •Основные правила интегрирования
- •29.Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов
- •Несобственные интегралы
13.Квадратичные формы, приведение их к каноническому виду. Знакоопределенность форм. Критерий Сильвестра. Понятие квадратичной формы
Первоначально теория квадратичных форм использовалась для исследования кривых и поверхностей, задаваемых уравнением второго порядка, содержащими две или три переменные, Позднее эта теория нашла и другие приложения. В частности, при математическом моделировании экономических процессов целевые функции могут содержать квадратичные слагаемые. Многочисленные приложения квадратичных форм потребовали построения общей теории, когда число переменных равно любому , а коэффициенты квадратичной формы не всегда являются вещественными числами.
Квадратичной
формой
от
неизвестных
называется сумма, каждое слагаемое
которой является либо квадратом одного
из неизвестных, либо произведением
двух разных неизвестных.
Канонический базис квадратичной формы
Принято
считать, что квадратичная форма
имеет канонический
вид,
если все коэффициенты при произведениях
различных переменных равны нулю, т.е.
при
.
При этом квадратичная форма представляет
собой сумму квадратов переменных с
соответствующими коэффициентами
,
т.е.:
.
В этом случае матрица квадратичной формы имеет диагональный вид:
Очевидно, что изучение свойств квадратичной формы, записанной в каноническом виде, значительно упрощается. В связи с этим возникает задача приведения произвольной квадратичной формы к каноническому виду. В основе многих известных методов приведения квадратичной формы к каноническому виду лежит следующая теорема.
Теорема. Всякая квадратичная форма с помощью невырожденного линейного преобразования может быть приведена к каноническому виду.
Теорема (Критерий Сильвестра). Справедливы следующие утверждения:
Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.
Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.
Доказательство: Докажем первое утверждение.
Необходимость.
Дано, что
положительно определена. Покажем, что
все угловые миноры матрицы
отличны от нуля. Допустим обратное, и
пусть
.
Тогда согласно Лемме найдется такой
ненулевой вектор
,
что
.
Однако это противоречит положительной
определенности квадратичной формы.
Итак,
матрица
удовлетворяет условию Якоби, поэтому
можно построить систему векторов Якоби
,
которая является каноническим базисом
,
причем выражение
–
ее
канонический вид в базисе
.
Теперь из положительной определенности
квадратичной формы и первого утверждения
доказанной ранее теоремы следует, что
,
и значит, что
.
Достаточность. Если , то угловые миноры матрицы отличны от нуля, и можно построить канонический базис квадратичной формы , в котором – канонический вид квадратичной формы . Поскольку , то положительно определена.
Аналогично доказывается второе утверждение теоремы.
14.Поверхности второго порядка, их классификация. Поверхность второго порядка — геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида
в
котором по крайней мере один из
коэффициентов
,
,
,
,
,
отличен
от нуля.
Классификация поверхностей второго порядка:
- эллипсоид, -мнимый эллипсоид, -мнимый конус, -однополюсный эллипсоид, - двухполюсный эллипсоид,
-конус, -эллиптический параболоид, -гиперболический параболоид, -эллиптический цилиндр,
-мнимый эллиптический цилиндр, -гиперболический цилиндр,-параболоидный цилиндр.