
- •Регуляция клеточного цикла
- •6. Амитоз. Понятие об апоптозе
- •Развитие и строение половых клеток самцов
- •Развитие и строение половых клеток самок
- •Оплодотворение и его биологическое значение
- •Типы дробления
- •Голобластическое дробление
- •Меробластическое дробление
- •Спиральное
- •Билатеральное
- •Анархическое
- •Типы гаструляции. Дифференцировка зародышевых лепестков
- •Процесс и способы гаструляции
ПОНЯТИЕ О МОРФОЛОГИИ, ЕЁ ПРЕДМЕТ И МЕТОДЫ ИЗУЧЕНИЯ
Морфология, изучает форму организмов в процессе индивидуального (онтогенез) и исторического (филогенез) развития. В узком смысле морфология изучает внешнюю форму оранизмов и их частей, в более широком — включает анатомию, изучающую их внутреннее строение, эмбриологию, исследующую образование и развитие зародыша, и цитологию, изучающую строение клетки. В зависимости от объекта изучения различают морфологию растений, морфологию животных, морфологию человека, морфологию грибов, морфологию микроорганизмов (в том числе морфологию бактерий) . Выделяют и морфологию отдельных органов. Морфоло́гия (в биологии) изучает как внешнее строение (форму, структуру, цвет, образцы) организма, таксона или его составных частей, так и внутреннее строение живого организма (например, морфология человека) . Подразделяется на наружную морфологию (или эйдономию) и внутреннюю морфологию (или анатомию) . Морфология отличается от физиологии тем, что последняя изучает в первую очередь функционирование организма. Фактически, понятие морфологии ввёл немецкий поэт и естествоиспытатель И. В. Гёте, определив её как «учение о форме органических тел, её образовании и преобразовании» . Также применяется термин «общая морфология» , который указывает на известные или главные отличительные стороны организма или морфологии таксона. Описание общей морфологии организма могло бы включать, к примеру, его форму, главные цвета, основную расцветку и т. д. , но не мелкие детали. Большинство таксонов отличаются от других по морфологическим признакам. Как правило, близкие таксоны имеют гораздо меньше отличий, чем более удалённые, связанные с ними, но есть и исключения из этого. Микровиды — это виды, которые выглядят похоже, или даже внешне одинаковы, но размножаются в изоляции. И наоборот, иногда не связанные таксоны оказываются одинаковыми по внешнему виду путём конвергентной эволюции или даже путём мимикрии. Ещё одна сложность, возникающая, когда полагаются на морфологические данные, может состоять в том, что при анализе ДНК двух разных видов фактически может оказаться, что это один вид. Методы: наблюдение, описательный метод, измерение, сравнительно-анатомический
МОРФОЛО́ГИЯ (от греч. morphe — форма и logos — слово, учение), в биологии — наука о форме и строении организмов. Выделяют морфологию животных и человека, к которой относят анатомию, эмбриологию, гистологию и цитологию, и морфологию растений, которая изучает строение и формообразование, главным образом на организменном уровне, а также на эволюционно-видовом (в связи с эволюцией формы). Морфология человека — раздел антропологии, изучающий закономерности изменчивости организма человека (возрастные, половые, территориальные, профессиональные), а также вариации отдельных его частей. Данные морфологии человека используются в учении об антропогенезе, расоведении и прикладной антропологии.
2.ПОНЯТИЕ О КЛЕТКЕ. ПОВЕРХНОСТНЫЙ И НАСЛЕДСТВЕННЫЙ МЕХАНИЗМ КЛЕТКИ.
Основная часть поверхностного аппарата клетки - плазматическая мембрана. Клеточные мембраны - важнейший компонент живого содержимого клетки - построены по общему принципу. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой липидов, в который включены молекулы белков. Липиды — это водонерастворимые вещества, молекулы которых имеют два полюса, или два конца. Один конец молекулы обладает гидрофильными свойствами, его называют полярным. Другой полюс гидрофобный, или неполярный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу неполярными концами, а их полярные полюса остаются снаружи, образуя гидрофильные поверхности. Кроме липидов, в состав мембраны входят белки. Их можно разделить на три группы: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Большинство белков мембраны является ферментами. Полуинтегральные белки образуют на мембране биохимический «конвейер», на котором в определенной последовательности осуществляется превращение веществ.
Строение плазматической мембраны Положение погруженных белков в мембране стабилизируется периферическими белками. Интегральные белки обеспечивают передачу информации в двух направлениях: через мембрану в сторону клетки и обратно. Интегральные белки бывают двух типов: переносчики и каналообразующие. Последние выстилают пору, заполненную водой. Через нее осуществляется прохождение ряда растворенных неорганических веществ с одной стороны мембраны на другую. Плазматическая мембрана, или плазмалемма, ограничивает клетку снаружи, выполняя роль механического барьера. Через нее происходит транспорт веществ внутрь клетки и наружу. Мембрана обладает свойством полупроницаемости. Молекулы проходят через нее с различной скоростью: чем больше размер молекул, тем меньше скорость прохождения их через мембрану. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы связаны с углеводными цепями, образуя гликокаликс. Углеводные цепи выполняют роль рецепторов. Благодаря им осуществляется межклеточное узнавание. Клетка приобретает способность специфически реагировать на воздействия извне. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный слой и внутриклеточные фибриллярные структуры, обеспечивающие механическую устойчивость плазматической мембраны. У растительных клеток кнаружи от мембраны расположена плотная структура - клеточная оболочка или клеточная стенка, состоящая из полисахаридов (целлюлозы). Компоненты клеточной стенки синтезируются клеткой, выделяются из цитоплазмы и собираются вне клетки, вблизи плазматической мембраны, образуя сложные комплексы. Клеточная стенка у растений выполняет защитную функцию, образует внешний каркас, обеспечивает тургорные свойства клеток. Наличие клеточной стенки регулирует поступление воды в клетку. Вследствие этого возникает внутреннее давление, тургор, препятствующее дальнейшему поступлению воды. |
Новые клетки возникают в результате деления уже существующих клеток. При делении одноклеточного организма из старого (материнского) организма возникают два новых. Многоклеточный организм развивается из одной-единственной клетки: ее многочисленное потомство возникает путем многократных клеточных дслений. Этот процесс продолжается в течение всей жизни: по мере роста и развития, а также регенерации, репарации (замещения) отслуживших клеток.
Открытие фундаментального закона, сформулированного Р. Вирховом (1855), о том, что всякая клетка происходит от клетки, положило начало пристальному изучению процессов клеточного деления. В.Флеминг в 1882 г. сообщил, что при делении ядря клетки хромосомы (сам термин был предложен позже) делятся вдоль. Годом позже Э. ванБенеден обратил внимание на то, что хромосомы, распределяющиеся между дочерними клетками, с точностью повторяют строение материнской старой хромосомы.
В это же время Э. Страсбургер, В. Ру и О. Гетвиг сформулировали «ядерную гипотезу наследственности». Таким образом, материальная непрерывность в ряду клеточных поколевши и поколений индивидов осуществляется путем размножения организмов, центральным моментом которого является деление клетки.
3.МЕТАБОЛИЧЕСКИЙ АППАРАТ КЛЕТКИ
Метаболизм как основа жизнедеятельности клетки
Под метаболизмом понимают постоянно происходящий в клетках живых организмов обмен веществ и энергии. Одни соединения, выполнив свою функцию, становятся ненужными, в других возникает насущная потребность. В различных процессах метаболизма из простых веществ при участии ферментов синтезируются высокомолекулярные соединения, в свою очередь сложные молекулы расщепляются на более простые.
Реакции биологического синтеза называются анаболическими (греч. anabole подъем), а их совокупность в клетке — анаболизмом, или пластическим обменом (греч. plastos вылепленный, созданный).
В клетке протекает огромное количество процессов синтеза: липидов в эндоплазматической сети, белков на рибосомах, полисахаридов в комплексе Гольджи эукариот и в цитоплазме прокариот, углеводов в пластидах растений. Структура синтезируемых макромолекул обладает видовой и индивидуальной специфичностью. Набор характерных для клетки веществ соответствует последовательности нуклеотидов ДНК, составляющих генотип. Для обеспечения реакций синтеза клетке требуются существенные затраты энергии, получаемой при расщеплении веществ.
Совокупность реакций расщепления сложных молекул на более простые носит название катаболизма (греч. katabole разрушение), или энергетического обмена. Примерами таких реакций является расщепление липидов, полисахаридов, белков и нуклеиновых кислот в лизосомах, а также простых углеводов и жирных кислот в митохондриях.
В результате процессов катаболизма высвобождается энергия. Существенная ее часть запасается в виде высокоэнергетичных химических связей АТФ. Запасы АТФ позволяют организму быстро и эффективно обеспечивать различные процессы жизнедеятельности.
Молекулы белков функционируют в организме от нескольких часов до нескольких дней. За этот период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые. Требуют постоянного обновления и сами клеточные структуры.
Пластический и энергетический обмены неразрывно взаимосвязаны. Процессы расщепления осуществляют энергетическое обеспечение процессов синтеза, а также поставляют необходимые для синтеза строительные вещества. Правильный обмен веществ поддерживает постоянство химического состава биологических систем, их внутренней среды. Способность организмов сохранять внутренние параметры неизменными носит название гомеостаза. Процессы метаболизма происходят в соответствии с генетической программой клетки, реализуя ее наследственную информацию.
Клеточная стенка микробов вполне проницаема для большинства соединений, присутствующих в сточных водах. Основным барьером между химическими соединениями стоков и метаболическим аппаратом микробной клетки является цитоплазматическая мембрана. Прохождение через мембрану большинства молекул химических веществ осуществляется благодаря участию молекул-переносчиков — специальных коферментов или пермеаз.
Попав внутрь клетки, химические соединения подвергаются ряду химических превращений и изменений, которые поставляют материал для образования клеточных компонентов и энергию биосинтеза. Превращения соединений осуществляются анаболическими и катаболическими путями. Анаболические пути приводят к синтезу новых клеточных компонентов, а катаболические — к разложению на низкомолекулярные продукты, которые служат продуктами обмена или предшественниками для биосинтеза и таким образом включаются в метаболические пути.
Катаболические превращения являются источником необходимой для клетки энергии, которая накапливается за счет синтеза адено-зинтрифосфата (АТФ) и других богатых энергией соединений. АТФ является универсальным переносчиком энергии в клетке [
Метаболический аппарат клетки - совокупность ее структур, участвующих в метаболизме. Органоиды, участвующие в ассимиляции: (по каждому органоиду коротко - строение и функции) 1) ЭПС 2) аппарат Гольджи 3) рибосомы 4) хлоропласты (у растений) Диссимиляция существляется в: (по каждой структуре - коротко стороение и функции) 1) лизосомах (подготовительный этап) 2) в цитоплазме (гликолиз) 3) в митохондриях (аэробный этап)
4.ЖИЗНЕННЫЙ ЦИКЛ КЛЕТКИ. МИТОЗ.
Клеточный цикл — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели.
Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12—36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10—24 ч.
Клеточный цикл эукариот состоит из двух периодов:
Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.
Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).
Регуляция клеточного цикла
Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины
Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт.
МИТОЗ
Мито́з (др.-греч.μίτος — нить) — непрямое деление клетки, наиболее распространенный способ репродукцииэукариотическихклеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений[1].
Митоз — один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяций клеток тканей.
Продолжительность митоза в среднем составляет 1—2 часа[1][4]. Митоз клеток животных, как правило, длится 30—60 минут, а растений — 2—3 часа.[5]. За 70 лет в теле человека суммарно осуществляется порядка 1014 клеточных делений[6].
Фазы митоза Митоз. I—III — профаза; IV — метафаза; V—VI — анафаза; VII—VIII — телофаза. Митоз — лишь одна из частей клеточного цикла, но он достаточно сложен, чтобы в его составе, в свою очередь, были выделены четыре фазы: профаза, метафаза, анафаза и телофаза. Удвоение хромосом происходит еще в ходе интерфазы. В результате этого, в митоз хромосомы вступают уже удвоенными, напоминающими букву X (идентичные копии материнской хромосомы соединены друг с другом в области центромеры) . В профазе происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления. В метафазе хромосомы располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку. Важно отметить, что они остаются в таком положении в течение довольно длительного времени. Обычно в связи с этим метафаза — наиболее удобное время для подсчета хромосомных чисел. В анафазе хромосомы делятся (соединение в районе центромеры разрушается) и расходятся к полюсам деления. В телофазе происходит разрушение веретена деления и образование ядерной оболочки вокруг дочерних ядер.
6. Амитоз. Понятие об апоптозе
Амито́з, или прямо́еделе́ниекле́тки (от др.-греч. ἀ- — частица отрицания и μίτος — «нить») — деление клеток простым разделением ядра надвое.
Впервые он описан немецкимбиологомРобертом Ремаком в 1841 году, термин предложен гистологомВальтером Флеммингом в 1882 году. Амитоз — редкое, но иногда необходимое явление[1]. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочекмлекопитающих, опухолевые клетки и др.).
При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализацияхроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.
Апопто́з (др.-греч. ἀπόπτωσις — опадание листьев) — программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро (в среднем за 90 минут[1]) фагоцитируются (захватываются и перевариваются) макрофагами либо соседними клетками, минуя развитие воспалительной реакции. Морфологически регистрируемый процесс апоптоза продолжается 1—3 часа.[2] Одной из основных функций апоптоза является уничтожение дефектных (повреждённых, мутантных, инфицированных) клеток. В многоклеточных организмах апоптоз к тому же задействован в процессах дифференциации и морфогенеза, в поддержании клеточного гомеостаза, в обеспечении важных аспектов развития и функционирования иммунной системы. Апоптоз наблюдается у всех эукариотов, начиная от одноклеточных простейших и вплоть до высших организмов. В программируемой смерти прокариотов участвуют функциональные аналоги эукариотических белков апоптоза.[3]
Исследования программируемой клеточной смерти ведутся с конца 1960-х годов.
В организме среднестатистического взрослого человека в результате апоптоза погибает ежедневно порядка 50—70 миллиардов клеток. Для среднестатистического ребёнка в возрасте от 8 до 14 лет число клеток, погибших путём апоптоза, составляет порядка 20—30 миллиардов в день. Суммарная масса клеток, которые на протяжении 1 года жизни подвергаются разрушению, эквивалентна массе тела человека
Одной из главных функций апоптоза в многоклеточном организме является поддержание клеточного гомеостаза, то есть постоянства клеточной популяции. При этом обеспечивается правильное соотношение численности клеток различных типов, селекция разновидностей клеток внутри популяции, удаление генетически дефектных клеток.[57] Во взрослом организме программируемая клеточная гибель, уравновешивая митотическое деление, обеспечивает обновление тканей путём поддержания сбалансированной численности клеток.
Схема развития половых клеток. Отличие в развитии половых клеток самцов и самок.
Развитие яйцеклеток называется оогенезом , а сперматозоидов - сперматогенезом. Процессы развития яйцеклеток и сперматозоидов несколько различаются.
Мужские половые клетки животных - сперматозоиды - образуются в семенниках. В их развитии различают несколько стадий ( рис. 74, слева ). Первая из них - стадия размноженияпервичных половых клеток - сперматогониев , которые интенсивно делятся путем митоза. Затем эти клетки вступают в профазу Iмейоза и превращаются в сперматоциты, первого порядка . В результате прекращающегося синтеза РНК и, следовательно, белка профазные клетки увеличиваются в размерах. Это - стадия роста. Стадия, во время которой проходят одно за другим два мейотических деления, получила название стадии созревания . В результате первого деления созревания из одного сперматоцита первого порядка образуется два сперматоцита второго порядка . После второго деления из каждого сперматоцита второго порядка возникают две гаплоидные клетки - сперматиды . Таким образом, из одной исходной клетки, вступившей в мейоз, образуются четыре сперматиды. Они имеют гаплоидный набор хромосом, но еще не являются специализированными клетками, способными к движению и проникновению внутрь яйцеклетки. Превращение сперматид в сперматозоиды происходит во время следующей стадии - стадии формирования . Она продолжается несколько суток (у человека, например, почти четыре недели). В это время ядро уменьшается в размерах за счет плотной упаковки хромосом. Резко сокращается объем цитоплазмы, и формируются цитоплазматические структуры, характерные только для сперматозоидов. Рядом с ядром из аппарата Гольджи образуется акросома - пузырек, содержащий ферменты, способные растворить оболочку яйцеклетки в момент оплодотворения. С противоположной стороны ядра или головки спермия возникает длинный жгут, или хвост, придающий сперматозоиду подвижность. В основании хвоста образующие его фибриллы окружаются слоем митохондрий. Между хвостом и головкой располагается центриоль ( рис. 75 ). Все эти преобразования обеспечивают дальнейшее поведение сперматозоида: его подвижность и проникновение в яйцеклетку. Плотная упаковка хромосом в головке сперматозоида и отсутствие цитоплазмы позволяют ему хорошо сохранять свою целостность вне организма и делают его очень устойчивым к неблагоприятным воздействиям внешней среды.
Сперматогонии , лежащие непосредственно на базальной мембранеизвитых семенных канальцев , проходят несколько последовательных стадий митотического деления. Общее количество сперматогоний в яичке человека составляет около 1 млрд. Различают две основные категории сперматогоний: сперматогонии A и сперматогонии B . Некоторые сперматогонии А, которые делятся митотически, остаются стволовыми , т. е. сохраняют способность к делению и поддерживают свою популяцию. Остальные дифференцируются в сперматогонии В, которые делятся митотически, дифференцируются в сперматоциты первого порядка и вступают в мейоз .
Сперматоциты первого порядка (первичные), соединены между собой межклеточными мостиками, которые остаются при митозесперматогоний благодаря неполному разделению клеток. Последующие поколения клеток также остаются соединенными между собой, в результате чего образуется синцитий , клетки которого составляют клон. Клетки синцития делятся синхронно, лишь единичные клетки не делятся. В результате мейоза I образуются две дочерние клетки сперматоциты второго порядка , которые далее образуют сперматиды. Таким образом, в результате деления одной сперматогонии образуются четыре сперматиды , каждая из которых обладает гаплоидным набором хромосом
Между процессами образования яйцеклеток и сперматозоидов у млекопитающих существует ряд важных различий. У женщин на ранней стадии эмбриогенеза из размножающихся оогоний образуется ограниченное число ооцитов, которые через определенные промежутки времени по очереди претерпевают овуляцию. Сперматогенез у мужчин начинается только после полового созревания и затем непрерывно продолжается в эпителиальной выстилке очень длинных, сильно извитых трубочек, называемых семенными канальцами , которые находятся в семенниках. Незрелые половые клетки - сперматогонии - располагаются на самой периферии канальца, у базальной мембраны, где они все время делятся путем митоза . Некоторые из дочерних клеток перестают делиться и дифференцируются в сперматоциты первого порядка . Эти клетки вступают, как уже говорилось выше, в I профазу мейоза , в которой происходит кроссинговер между их спаренными гомологичными хромосомами, а затем заканчивают первое деление , образуя по два сперматоцита второго порядка; у человека каждый из них содержит по 22 дуплицированные аутосомы и одну дуплицированную хромосому X или Y. Каждая хромосома по-прежнему состоит из двух сестринских хроматид , и когда оба сперматоцита второго порядка претерпевают второе деление мейоза , образуются четыре сперматиды с гаплоидным числом одиночных хромосом. Затем такие гаплоидные сперматиды в результате морфологической дифференцировки превращаются в зрелые спермии, которые выходят в просвет семенного канальца ( рис. 15- 37 и рис. 15-38 ), а позднеее - в придаток семенника, представляющий собой извитую трубочку, охватывающуюю семенник; здесь спермии накапливаются и здесь же продолжается их созревание.
Биологические особенности половых клеток
При всей биологической «равноправности» мужской и женской половых клеток в процессе оплодотворения, в формировании наследственности дочернего организма, перед ними все же стоят совершенно разные функциональные задачи. Яйцеклетка должна обеспечить зародыш будущего организма основной исходной массой цитоплазмы и достаточным количеством питательного материала. Именно поэтому она должна быть сравнительно крупной и не может быть активно подвижной. Яйцеклетка собаки, так же как и всех животных в сотни раз крупнее сперматозоида, ее максимальный диаметр равняется 140 мкм. Вместе с тем, она не способна к самостоятельному делению.
Сперматозоид, напротив, должен обладать активной подвижностью, чтобы быть способным достичь яйцеклетки, и в связи с этим должен быть максимально разгружен от запасных питательных веществ и обладать малыми размерами и значительными запасами энергии. Кроме того, спермии значительно многочисленнее яйцеклеток, так как шанс достичь яйцеклетки для каждого данного спермия невелик. Так у собаки в каждой одновременно выбрасываемой при половом акте порции семени (эякуляте) содержатся сотни миллионов сперматозоидов, а в оплодотворении из них участвуют одни или немногие. Ряд физиологических особенностей спермиев (свойство двигаться против тока жидкости, выделение ферментов определенным образом влияющих на яйцеклетку и т. д.), а также специфических морфологических черт представляют собой весьма совершенные приспособления, обеспечивающие возможность оплодотворения.