
- •Кафедра этт. Дисциплина «Основы технологии электронной компонентной базы» Лабораторная работа № 1. Особенности нанесения пленок при термовакуумном испарении
- •1. Основные понятия и соотношения
- •2. Расчет скорости испарения
- •3. Расчет толщины пленок
- •4. Задание к работе
- •5. Требования к отчету
- •6. Контрольные вопросы
- •7. Библиографический список
- •Варианты заданий
Кафедра этт. Дисциплина «Основы технологии электронной компонентной базы» Лабораторная работа № 1. Особенности нанесения пленок при термовакуумном испарении
Цель работы: ознакомление с особенностями генерации и распространения потока молекул в вакууме и c распределением толщины пленки по поверхности подложки большой площади при термовакуумном испарении.
1. Основные понятия и соотношения
При термовакуумном испарении поток атомов или молекул вещества генерируется при нагревании материала в вакууме до температуры, близкой или превышающей его температуру плавления.
Испарение с поверхности жидкой фазы наиболее часто используется в технике. Для объяснения механизма процесса было предложено несколько моделей. В простейшей из них жидкая фаза (расплавленный материал) рассматривается как система осцилляторов, поверхностные молекулы которой связаны с определенной энергией испарения. Предполагается, что переход в газообразную фазу происходит тогда, когда энергия колебаний молекул на поверхности равна или превосходит энергию испарения. Предполагается также, что все молекулы поверхности имеют одну и ту же энергию связи и равную вероятность испарения. Вследствие интерференции колебаний осцилляторов становится возможным испарение отдельных молекул.
В усовершенствованной статистической модели состояние молекул на поверхности описывается максвелловским распределением по энергии и пространственным распределением, связывающим смещение молекул от равновесного положения с их потенциальной энергией. Испарение молекулы происходит тогда, когда она смещается на такое расстояние, что ее потенциальная энергия становится равной энергии испарения.
Экспериментальные исследования показали, что статистическая модель достаточно хорошо применима к жидкостям, испарение которых происходит за счет обмена одиночных атомов с одноатомным паром (ртуть, калий, бериллий и ряд других металлов). Аналогично ведут себя и некоторые органические жидкости, молекулы которых имеют сферическую симметрию и малые энтропии испарения (например, четыреххлористый углерод – CCl 4 ).
В веществах, молекулы которых имеют различные степени свободы в конденсированном и газообразном состояниях, при испарении должно происходить изменение не только поступательного движения, но и внутренней энергии молекул. В тоже время статистически маловероятно, что молекула на поверхности получает в один и тот же момент как кинетическую, так и потенциальную энергии, необходимые для испарения при термодинамическом равновесии. Более вероятно, что молекула получает вначале необходимую кинетическую энергию, а затем должна до момента испарения получить квант внутренней энергии.
Полагают, что среди различных видов внутренней энергии молекул, наибольшее влияние на вероятность испарения оказывает энергия вращения. Это подтверждается тем, что время релаксации, необходимое для получения вращательной степени свободы молекулой с добавленной кинетической энергией, больше, чем для других процессов. Таким образом, ограничение испарения происходит вследствие потери одной степени свободы, которая уменьшает число возможных состояний для молекул в жидкой фазе. Такая форма ограничения фазового перехода называется ограничением по энтропии.
Испарение с ограничением по энтропии подтверждается для жидкостей с малыми полярными молекулами, которые испаряются с невозмущенных поверхностей (бензин, хлороформ, этанол, метанол и др.). Некоторые органические жидкости имеют вращательную степень свободы и в активированном состоянии.
При испарении металлов основным видом частиц в газовой фазе являются одиночные атомы металла и лишь небольшую часть (меньше 0,1%) составляют двухатомные молекулы. Для некоторых элементов (C, S, Se, Te , P, As, Sb) пары состоят из многоатомных молекул.
Испарение с поверхности твердой фазы, называемое сублимацией, объясняется наличием на поверхности материала моноатомных ступенек и состояний с различным числом атомов в первом и последующем слое. Так как силы связи, действующие на данный атом со стороны соседних атомов, являются аддитивными (складываются), то значения энергии испарения для атомов в различных состояниях будут различными. В первую очередь испаряются атомы с наименьшим числом связей (соседей), что создает благоприятные условия для испарения других атомов.
При испарении материалов сложного состава необходимо учитывать фракционирование вещества и возможность диссоциации. Весьма важно учитывать особенности взаимодействия испаряемого материала с материалом испарителя.
Пролет частиц вещества от испарителя до поверхности подложки сопровождается их столкновениями между собой и с молекулами остаточных газов. Для уменьшения такого взаимодействия испарение производят при давлении насыщенных паров вещества не более 10-2 Торр, а остаточных газов – не более 10-4 – 10-5 Торр.
Конденсация атомов (молекул) вещества происходит после пролета материала до поверхности подложки. Она зависит от соотношения свободных энергий потока частиц и поверхности. Послойный режим роста пленок (режим Франка – Ван-дер-Мерве) реализуется, если энергия связи атомов осаждаемого вещества с подложкой больше энергии связи атомов друг с другом.
Островковый режим Фольмера-Вебера реализуется тогда, когда атомы вещества связаны друг с другом сильнее, чем с подложкой. Маленькие зародыши растут, превращаясь в большие островки конденсированной фазы. После заполнения промежутков (каналов) между островками, они сливаются и образуют сплошную пленку.
При промежуточном режиме Странского-Крастанова вначале происходит послойный рост одного-двух монослоев. Затем начинается рост островков на их поверхности. При достаточном размере островков они сливаются с образованием сплошной пленки. Одной из причин такого поведения является изменение параметра решетки при заполнении очередного монослоя.