Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1часть Экзамен вопросы фарм 2013год.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
378.68 Кб
Скачать

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем

  • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

  • IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов; два антигенсвязывающих Fab-фрагмента и один FC-фрагмент. Fab-фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью, тогда как FC-фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.

  • IgM представляют собой пентамер основной четырёхцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними FC-фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.

  • IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Основной функцией IgA является защита слизистых оболочек дыхательных, мочеполовых путей и желудочно-кишечного тракта от инфекций. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например в слюне, слезах, молозивемолоке, отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.

  • IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, ещё не представлявшихся антигену. Молекулярная масса 175 кДа.

  • IgE в свободном виде в плазме почти отсутствует. Способен осуществлять защитную функцию в организме от действия паразитарных инфекций, обуславливает многие аллергические реакции. Механизм действия IgE проявляется через связывание с высоким сродством (10−10М) с поверхностными структурами базофилов и тучных клеток, с последующим присоединением к ним антигена, вызывая дегрануляцию и выброс в кровь высоко активных аминов (гистамина и серотонина — медиаторов воспаления), на чем основано применение аллергических диагностических проб. Молекулярная масса 200 кДа.

25. Структура и химический состав вирусов. Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дизъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом. Форма вирионов может быть раз­личной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиели­та, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Капсид и суперкапсид защищают вирионы от влияния окру­жающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называ­ются сердцевиной.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии. Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выяв­ляемые под микроскопом при специальном окрашива­нии. Вирус натуральной оспы образует цитоплазматические включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Геном вирусов способен включаться в состав генетического аппарата клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов (вирусы герпеса и др.) могут находиться в цитоплазме инфициро­ванных клеток, напоминая плазмиды.

Вирусы являются внутриклеточными паразитами человека, животных, растений, бактерий, грибов и других живых существ. Вирусы представляют собой внеклеточные формы жизни, имеющие собственный геном и обладающие способностью к самовоспроизведению лишь в клетках более высокоорганизованных существ. Они существуют в двух формах: внеклеточной (покоящейся) и внутриклеточной (размножающейся, репродуцирующейся) или вегетативной. Внеклеточные формы обозначают термином «вирусная частица», «вирусный корпускул», а внутриклеточные формы - термином «комплекс вирус-клетка».

Все вирусы подразделяют на две группы: простые и сложные. Простые вирусы содержат нуклеиновую кислоту и несколько кодируемых ею полипептидов. Сложные вирусы состоят из нуклеиновой кислоты, липидов и углеводов, которые имеют клеточное происхождение, т. е. у большинства вирусов не кодируются вирусным геномом. В исключительных случаях в вирион включаются клеточные нуклеиновые кислоты или полипептиды.

В состав вирусов входят нуклеиновые кислоты и белки. Белки и нуклеиновые кислоты неразрывно связаны между собой. Синтез белков не возможет без нуклеиновых кислот, а синтез кислот - без активного участия белков, ферментов. Известно, что нуклеиновые кислоты и белки состоят из С, О, Н, N, P, S. геном вируса представлен ДНК или РНК. По строению генома зрелые вирусные частицы подразделяют на следующие группы:

1. Вирусы, геном которых - одноцепочная молекула РНК, обладающая матричной активностью;

2. Вирусы, геном которых - одноцепочная РНК не обладающая матричной активностью;

3. Вирусы с одноцепочной фрагментированной РНК, не обладающей матричной активностью;

4. Вирусы, геном которых состоит из нескольких молекул РНК, обладающих матричной активностью;

5. Вирусы с двухцепочной фрагментированной РНК;

6. Вирусы с линейной одноцепочной ДНК;

7. Вирусы с двухцепочной циркулярной ДНК;

8. Вирусы с двухцепочной линейной инфекционной ДНК;

9. Вирусы с двухцепочной линейной неинфекционной ДНК.

По нуклеотидному составу ДНК вирусов беспозвоночных животных более разнообразна, чем ДНК позвоночных. Нуклеиновые кислоты вирионов в большинстве случаев имеют вирусное, а не клеточное происхождение. Инфекционность вирусов связана с нуклеиновой кислотой, а не с белком, входящим в их состав. Это было доказано немецкими учеными Г. Шраммом и А. Гирером (1956). Нуклеиновые кислоты являются хранителем всей генетической информации вируса. Их химический состав и структура принципиально не отличаются от нуклеиновых кислот более высокоорганизованных существ (бактерий, простейших, животных). Большую часть вирусной частицы составляют белки в состав которых входят те же аминокислоты, что и белки других организмов. Вирусный белок представлен в основном полипептидами одного-трех типов. Белки на поверхности вирусной частицы представляют собой антигены, ответственные за образование антител у инфицированных животных. Основная часть белков - это белки, синтезированные в восприимчивой клетке по информации генома вируса. В редких случаях возможно включение белков инфицированной клетки в липопротеидные оболочки и сердцевину некоторых вирусов (вирус птичьего миелобластоза, икосаэдрические вирусы).

Белки вирусов подразделяют на белки капсида, сердцевины, оболочки и ферментативные белки. Помимо белков в липопротеидной оболочки обнаружены липиды и углеводы. Углеводы преимущественно содержаться в гликопротеидных пепломерах на поверхности вирусной частицы.

В составе вирусов обнаружены минеральные вещества К, Na, Ca, Mg, Fe. Они участвуют в формировании связей белка с нуклеиновой кислотой.

26. Классы иммуноглобулинов, их характеристика. Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы G1, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgG1 и IgG3 связывают комплемент, причем G3 ак­тивнее, чем G1. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы M1 и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.

На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.

IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA: На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней.

IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опосредованной цитотоксичности.

Секреторный IgA: В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа.

Иммуноглобулин класса DСведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgDимеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

27. Принципы и методы выделения чистых культур бактерий. Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты —биовары. Биовары, различающие­ся по биохимическим свойствам, называют хемоварами, по анти­генным свойствам — сероварами, по чувствительности к фагу — фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.

Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.

Чистую культуру бактерий получают для проведения диагно­стических исследований — идентификациикоторая достигается путем определения морфологических, культуральных, биохимических и других признаков микроорганизма.

Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

Культуральные свойства характеризуются питатель­ными потребностями, условиями и типом роста бактерий на плот­ных и жидких питательных средах. Они устанавливаются по мор­фологии колоний и особенностям роста культуры.

Биохимические признаки бактерий определяются на­бором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической прак­тике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определя­ют на дифференциально-диагностических средах.

При идентификации бактерий до рода и вида обращают вни­мание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент обра­зуют Serratia marcescens, золотистый пигмент — Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент — Pseudomonas aeruginosa.

Для установления биовара   (хемовара, серовара,  фаготипа) проводят дополнительные исследования по выявлению соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.

Методы выделения чистых культур бакте­рий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением  распределяют  мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надписывают, указывая дату посева и характер посевного мате­риала  (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

28. Антигены: основные свойства. Антигены бактериальной клетки. Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы:  1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияетколичество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 оС. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили названиепротективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

29. Действие физических и химических факторов на микроорганизмы. Влияние физических факторов.

Влияние температуры. Различные группы микроорга­низмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при вы­сокой — термофилами.

К психрофильным микроорганизмам относится боль­шая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, све­тящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бакте­рии (возбудитель псевдотуберкулеза размножается при темпера­туре 4 °С). В зависимости от температуры культивирования свой­ства бактерий меняются. Интервал температур, при кото­ром возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, прибли­жаясь   к   температурному   оптимуму   мезофильных   бактерий.

Мезофилы включают основную группу патогенных и услов­но-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развива­ются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при темпе­ратуре 250—300 °С и давлении 262 атм.

Термофилы обитают в горячих источниках, участвуют в процессах самонагревания на­воза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компос­том. Поскольку навоз наиболее богат термофилами, их рассмат­ривают как показатель загрязненности почвы.

Хорошо выдерживают микроорганизмы действие низких тем­ператур. Поэтому их можно долго хранить в замороженном со­стоянии, в том числе при температуре жидкого газа (—173 °С).

Высушивание. Обезвоживание вызывает нарушение функ­ций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гоно­реи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособнос­ти, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты дли­тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения. Неионизирующее излучение — уль­трафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных ве­ществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме­тов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

Ионизирующее излучение применяют для стерилизации од­норазовой пластиковой микробиологической посуды, питатель­ных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони­зирующих излучений, например Micrococcus radiodurans была вы­делена из ядерного реактора.

Действие химических веществХимические вещества могут ока­зывать различное действие на микроорганизмы: служить источ­никами питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфи­цирующими. Антимикробные хи­мические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, отно­сятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли).

Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Дезинфекция — процедура, пре­дусматривающая обработку загрязненного микробами предмета с целью их уничтоже­ния до такой степени, чтобы они не смогли вызвать инфекцию при использовании дан­ного предмета. Как правило, при дезинфек­ции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

30. Антителообразование. Первичный и вторичный иммунный ответ. Антителообразование (син.: антителогенез -- нрк, биосинтез антител, синтез антител) -- образование специфических иммуноглобулинов, индуцированное антигеном; происходит гл. обр. в зрелых плазматических клетках, а также в плазмобластах и лимфобластах. Первичный и вторичный иммунный ответ

Иммунная система обладает двумя поистине удивительными свойствами: специфическим распознаванием и иммунной памятью. Под последней понимают способность развивать качественно и количественно более эффективный иммунный ответ при повторном контакте с тем же патогеном. Согласно этому различают первичный и вторичный иммунный ответ. Первичный иммунный ответ реализуется при первом контакте с незнакомым антигеном, а вторичный – при повторном. Вторичный иммунный ответ является более совершенным, так как осуществляется на качественно более высоком уровне из-за наличия преформированных иммунных факторов, отражающих генетическую адаптацию к патогену (уже имеются готовые гены специфических иммуноглобулинов и антиген-распознающих рецепторов Т-клеток). Действительно, здоровые люди не болеют дважды многими инфекционными заболеваниями, так как при повторном заражении реализуется вторичный иммунный ответ, при котором отсутствует длительная воспалительная фаза, а в работу сразу же вступают иммунные факторы – специфические лимфоциты и антитела (табл. 5). Вторичный иммунный ответ характеризуется следующими признаками: 1. Более ранним развитием, иногда – даже молниеносным. 2. Меньшей дозой антигена, необходимой для достижения оптимального иммунного ответа. 3. Увеличением силы и продолжительности иммунного ответа за счёт более интенсивной продукции цитокинов (Тh 1 или Th 2 профиля, в зависимости от природы патогена). 4. Усилением клеточных иммунных реакций за счёт более интенсивного образования специфических Т-хелперов 1 типа и цитотоксических Т-лимфоцитов. 5. Усилением образования антител за счёт формирования большего количества Т-хелперов 2 типа и плазматических клеток. 6. Повышением специфичности распознавания иммуногенных пептидов Т-лимфоцитами за счёт увеличения аффинности их антиген-специфических рецепторов. 7. Повышением специфичности синтезируемых антител за счёт изначальной продукции IgG высокой аффинности/авидности. Следует отметить, что невозможность формирования эффективной иммунной памяти является одним из характерных симптомов иммунодефицитных заболеваний человека. Так, у пациентов с гипоиммуноглобулинемией наблюдается феномен множественных эпизодов т.н. детских инфекций, так как после перенесённых инфекционных болезней не формируется защитный титр антител. Больные с дефектами клеточного иммунитета также не формируют иммунную память на Т-зависимые антигены, что проявляется отсутствием сероконверсии после инфекций и вакцинаций, однако общие концентрации иммуноглобулинов в их сыворотке крови могут быть нормальными.

31. Бактериофаги. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные фаги. Лизогения.

 Бактериофаги. Взаимодействие фага с бактериаль­ной клеткой. Умеренные и вирулентные бактериофаги. Лизогения.

Бактериофаги — вирусы бактерий, обладающие способностью специфически про­никать в бактериальные клетки, репродуцироваться в них и вы­зывать их растворение (лизис).

Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги.

Ви­рулентные фаги, проникнув в бактериальную клетку, авто­номно репродуцируются в ней и вызывают лизис бактерий. Про­цесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодей­ствия вирусов человека и животных с клеткой хозяина. Однако для фагов, имеющих хвостовой отросток с сокращающим­ся чехлом, он имеет особенности. Эти фаги адсорбируются на по­верхности бактериальной клетки с помощью фибрилл хвостово­го отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержаща­яся в головке, проходит через полость хвостового стержня и ак­тивно впрыскивается в цитоплазму клетки. Остальные структур­ные элементы фага (капсид и отросток) остаются вне клетки.

После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых ча­стиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стен­ки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии.

Взаимодействие фагов с бактериальной клеткой характеризу­ется определенной степенью специфичности. По специфичнос­ти действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий.

Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии. В таком случае гено­мом фага называют профаг. Профаг, ставший частью хромосо­мы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наслед­ству от клетки к клетке неограниченному числу потомков.

Био­логическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией, а культура бакте­рий, содержащая профаг, получила название лизогенной. Это название отражает способность профага самопроизвольно или под действи­ем ряда физических и химических факторов исключаться из хро­мосомы клетки и переходить в цитоплазму, т. е. вести себя как вирулентный фаг, лизирующий бактерии.

Лизогенные культуры по своим основным свойствам не от­личаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага. Изменение свойств мик­роорганизмов под влиянием профага получило название фаго­вой конверсии. Последняя имеет место у многих видов мик­роорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др. Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захва­тить часть хромосомы клетки и при лизисе последней перено­сит эту часть хромосомы в другую клетку. Если микробная клет­ка станет лизогенной, она приобретает новые свойства. Таким образом, умеренные фаги являются мощным фак­тором изменчивости микроорганизмов.

32. Реакции пассивной гемагглютинации. Компоненты. Применение.

Реакция непрямой (пассивной) гемагглютинации (РНГА, РПГА) основана на использова­нии эритроцитов (или латекса) с адсорбиро­ванными на их поверхности антигенами или антителами, взаимодействие которых с соот­ветствующими антителами или антигенами сыворотки крови больных вызывает склеива­ние и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка.

Компоненты. Для постанов­ки РНГА могут быть использованы эритроциты барана, лошади, кролика, курицы, мыши, человека и другие, которые заготавли­вают впрок, обрабатывая формалином или глютаральдегидом. Ад­сорбционная емкость эритроцитов увеличивается при обработке их растворами танина или хлорида хрома.

Антигенами в РНГА могут служить полисахаридные АГ микро­организмов, экстракты бактериальных вакцин, АГ вирусов и риккетсий, а также другие вещества.

Эритроциты, сенсибилизированные АГ, называются эритроцитарными диагностикумами. Для приготовления эритроцитарного диагностикума чаще всего используют эритроциты барана, обла­дающие высокой адсорбирующей активностью.

Применение. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гор­мона в моче при установлении беременности, для выявления повышенной чувствительнос­ти к лекарственным препаратам, гормонам и в некоторых других случаях.

Механизм. Реакция непрямой гемагглютинации (РНГА) отличается значительно более высокой чувствительностью и специфич­ностью, чем реакция агглютинации. Ее используют для иденти­фикации возбудителя по его антигенной структуре или для индикации и идентификации бактериальных продуктов — токси­нов в исследуемом патологическом материале. Соответственно используют стандартные (коммерческие) эритроцитарные анти­тельные диагностикумы, полученные путем адсорбции специфи­ческих антител на поверхности танизированных (обработанных танином) эритроцитов. В лунках пластмассовых пластин готовят последовательные разведения исследуемого материала. Затем в каждую лунку вносят одинаковый объем 3 % суспензии на­груженных антителами эритроцитов. При необходимости реакцию ставят параллельно в нескольких рядах лунок с эритроцитами, нагруженными   антителами   разной   групповой   специфичности.

Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отри­цательной реакции появляется осадок в виде компактного.диска или кольца на дне лунки, при положительной реакции — харак­терный кружевной осадок эритроцитов, тонкая пленка с неров­ными краями.

Морфология. Сложноорганизованный РНК-содержащим вирус сфе­рической формы. Геном представлен одной линейной «+» цепью РНК, обладает большой вариабельностью.  

Антигенная структура. Вирус обладает слож­ной антигенной структурой. Антигенами яв­ляются: 1.  Гликопротеины оболочки  2. Сердцевинный  антиген  НСс-антиген   3. Неструктурные белки.

Резистентность. Чувствителен УФ-лучам, нагреванию до 50С.

Эпидемиология. Наиболее часто ВГС передается при переливаниях крови, трансплацентарно, половым путем.

Клиника: Часто встречаются безжелтушные формы, течение инфекции в острой форме, в 50 % случаев процесс переходит в хроническое те­чение с развитием цирроза и первичного ра­ка печени.

Микробиологическая диагностика: Используются ПЦР и серо­логическое исследование. Серологическое исследование.

Профилактика и лечение. Для профилакти­ки – тоже, что и при гепатите В. Для лечения применяют интерфе­рон и рибовирин. Специфическая профилак­тика – нет.

33. Методы стерилизации. Аппаратура.

Стерилизация предполагает полную инактивацию микробов в объектах, подвергающихся обработке.

Существует три основных метода стерили­зации: тепловой, лучевой, химической.

Тепловая стерилизация основана на чувстви­тельности микробов к высокой температуре. При 60оС и наличии воды происходит денату­рация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные фор­мы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболоч­ками, инактивируются при 160—170 °С.

Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.

Стерилизацию сухим жаром осуществля­ют в воздушных стерилизаторах (прежнее название — «сухожаровые шкафы» или «печи Пастера»). Воздушный стерилизатор пред­ставляет собой металлический плотно закры­вающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем произво­дят, как правило, при 160°С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 °С - 40 мин.

Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инстру­менты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.

Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают впаровых стерилизаторах.

Обработка паром под давлением в паровых стерилизаторах (старое название — «автокла­вы») является наиболее универсальным мето­дом стерилизации.

Паровой стерилизатор (существует множес­тво его модификаций) — металлический цилиндр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими конт­рольно-измерительными приборами. В авто­клаве создается повышенное давление, что приводит к увеличению температуры кипения.

Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 °С. Наиболее распростра­ненный режим работы парового стерилизатора: 2 атм. — 121 °С — 15—20 мин. Время стерилиза­ции уменьшается при повышении атмосфер­ного давления, а следовательно, и температуры кипения (136 °С — 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, так как, во-первых, высокая температура должна быть и внутри стерилизуемого материала и, во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую не­исправность автоклава).

Стерилизуют в автоклаве большую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.

Одной из разновидностей тепловой стери­лизации является дробная стерилизация, ко­торую применяют для обработки материалов, не выдерживающих температуру выше 100 °С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в во­дяной бане при 80 °С в течение 30—60 мин.

В настоящее время применяют еще один метод тепловой стерилизации, предназначен­ный специально для молока — ультравысоко­температурный (УВТ): молоко обрабатывают в течение нескольких секунд при 130—150 °С.

Химическая стерилизация предполагает ис­пользование токсичных газов: оксида этиле­на, смеси ОБ (смеси оксида этилена и бро­мистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются алкилирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.

Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.

Перед химической стерилизацией все из­делия, подлежащие обработке, должны быть высушены.

Этот вид стерилизации небезопасен для персонала, для окружающей среды и для па­циентов, пользующихся простерилизованными предметами (большинство стерилизующих агентов остается на предметах).

Однако существуют объекты, которые мо­гут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких по­лимеров, питательные среды с белком и т. п., для которых пригодна только химическая сте­рилизация. Например, космические корабли и спутники, укомплектованные точной ап­паратурой, для их деконтаминации обезв­реживают газовой смесью (оксид этилена и бромистого метила).

В последнее время в связи с широким рас­пространением в медицинской практике изде­лий из термолабильных материалов, снабжен­ных оптическими устройствами, например эндоскопов, стали применять обезврежива­ние с помощью химических растворов. После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в сте­рилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стери­лизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и по­мещают в стерильную емкость. Все манипу­ляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.

Лучевая стерилизация осуществляется либо с помощью гамма-излучения, либо с помо­щью ускоренных электронов.

Лучевая стерилизация является альтернати­вой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдержи­вают высокой температуры. Лучевая стерили­зация позволяет обрабатывать сразу большое количество предметов (например, одноразо­вых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода впол­не оправданно, несмотря на его экологичес­кую опасность и неэкономичность.

Еще одним способом стерилизации является фильтрование. Фильтрование с помощью раз­личных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных уль­трафильтров из коллоидных растворов нитроцеллюлозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бак­терий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.

В настоящее время все более широкое при­менение находят современные методы стери­лизации, созданные на основе новых техно­логий, с использованием плазмы, озона.

34. Иммунологическая память и иммунологическая толерантность.

Иммунологическая память. При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высо­кую специфичность к конкретному анти­гену, распространяется как на гуморальное, так и клеточное звено иммунитета и обус­ловлена В- и Т-лимфоцитами. Она обра­зуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ей наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата — ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию — криз отторжения.

Иммунологическая толе­рантность — явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены.Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность.Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантностьвызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность,наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2.  Блокада биологической активности иммунокомпетентных клеток.

3.  Быстрая нейтрализация антигена анти­телами.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.

35. Молекулярно-биологические методы, используемые в диагностике инфекционных болезней.

Полимеразная цепная реакция позволяет обнаружить микроб в ис­следуемом материале (воде, продуктах, ма­териале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследу­емого материала выделяют ДНК, в которой определяют наличие специфичного для дан­ного микроба гена. Обнаружение гена осу­ществляют его накоплением. Для этого необ­ходимо иметь праймеры комплементарного З'-концам ДНК исходного гена. Накопление (амплификация) гена выполняется следую­щим образом. Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомо­го гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарности ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в резуль­тате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом ко­личество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ. Данный метод основан на применении фер­ментов, носящих название рестриктаз.Рестриктазы представляют собой эндонуклеазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов. Особое значение для методов мо­лекулярной генетики имеют рестриктазы, кото­рые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относи­тельно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может про­исходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической еди­ницы находится строго определенное (генети­чески задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго опреде­ленного количества фрагментов ДНК фикси­рованного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашива­ют бромистым этидием и фотографируют в УФ-излучении. Таким образом, можно полу­чить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, вы­деленных из различных штаммов, можно оп­ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергну­тые мутациям.

Этот метод используется также как началь­ный этап метода определения последователь­ности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства раз­личных ДНК. Применяется при идентифи­кации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная мо­лекула нуклеиновой кислоты, меченная ра­диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, содержащий радиоактивный зонд. Создаются ус­ловия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу­ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных основа­ний в оперонах, кодирующих рРНК, отлича­ется консервативностью, присущей каждому виду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких ко­пиях. Фрагменты ДНК, полученные после об­работки ее рестриктазами, содержат последо­вательности генов рРНК, которые могут быть обнаружены методом молекулярной гибри­дизации с меченой рРНК соответствующего виды бактерий. Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен методриботипирования, который позволяет производить мониторинг выделенных штам­мов и определение их вида. В настоящее вре­мя риботипирование проводится в автомати­ческом режиме в специальных приборах.

Опосредованная транскрипцией амплифика­ция рРНК используется для диагностики сме­шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб­ридизации амплифицированных рРНК, спе­цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице, вы­деленной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммуноферментного анализа (ИФА).

Реакция проводится в автоматическом ре­жиме в установках, в которых одномоментное определение рРНК, принадлежащих различ­ным видам бактерий, достигается разделе­нием амплифицированного пула рРНК на несколько проб, в которые вносятся компле­ментарные видоспецифическим рРНК мече­ные олигонуклеотиды для гибридизации.

36. Механизмы гиперчувствительности замедленного типа.

К аллергическим реак­циям относят два типа реагирования на чужеродное вещество: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). К ГНТ относятся аллергические реакции, проявляющиеся уже че­рез 20—30 мин после повторной встречи с антигеном, а к ГЗТ — реакции, возникающие не ранее чем через 24—48 ч. Механизм и клинические проявления ГНТ и ГЗТ различны. ГНТ связана с вы­работкой антител, а ГЗТ — с клеточными реакциями.

ГЗТ впервые описана Р. Кохом (1890). Эта форма проявления не связана с антителами, опосредована клеточными механизма­ми с участием Т-лимфоцитов. К ГЗТ относятся следующие фор­мы проявления: туберкулиновая реакция, замедленная аллергия к белкам, контактная аллергия.

В отличие от реакций III и III типов реакции IV типа не свя­заны с антителами, а обусловлены клеточными реакциями, прежде всего Т-лимфоцитами. Реакции замедленного типа могут возникать при сенсибилизации организма:

1. Микроорганизмами и микробными антигенами (бактериальны­ми, грибковыми, протозойными, вирусными); 2. Гельминтами; 3. Природными и искусственно синтезированными гаптенами (лекарственные препараты, красители); 4. Некоторыми белками.

Следовательно, реакция замедленного типа может вызывать­ся практически всеми антигенами. Но наиболее ярко она про­является на введение полисахаридов, низкомолекулярных пеп­тидов, т. е. малоиммуногенных антигенов. При этом реакцию вызывают малые дозы антигенов и лучше всего при внутрикожном введении.

Механизм аллергической реакции этого типа состоит в сен­сибилизации Т-лимфоцитов-хелперов антигеном. Сенсибилизация лимфоцитов вызывает выделение медиаторов, в частности интерлейкина-2, которые активируют макрофаги и тем самым вов­лекают их в процесс разрушения антигена, вызвавшего сенсибилизацию лимфоцитов. Цитотоксичность проявляют также и сами Т-лимфоциты. О роли лимфоцитов в возникновении аллер­гий клеточного типа свидетельствуют возможность передачи ал­лергии от сенсибилизированного животного несенсибилизированному с помощью введения лимфоцитов, а также подавление реакции при помощи антилимфоцитарной сыворотки.

Морфологическая картина при аллергиях клеточного типа но­сит воспалительный характер, обусловленный реакцией лимфо­цитов и макрофагов на образующийся комплекс антигена с сенсибилизированными лимфоцитами.

Аллергические реакции клеточного типа проявляются в виде туберкулиновой реакции, замедленной аллергии к белкам, кон­тактной аллергии.

Туберкулиновая реакция возникает через 5—6 ч после внутрикожного введения сенсибилизированным туберкулезной палоч­кой животным или человеку туберкулина, т. е. антигенов туберкулезной палочки. Выражается реакция в виде покраснения, при­пухлости, уплотнения на месте введения туберкулина. Сопровож­дается иногда повышением температуры тела, лимфопенией. Раз­витие реакции достигает максимума через 24—48 ч. Туберкули­новая реакция используется с диагностической целью для вы­явления заболеваний туберкулезом или контактов организма с туберкулезной палочкой.

Замедленная аллергия возникает при сенсибилизации малы­ми дозами белковых антигенов с адъювантом, а также конъюгатами белков с гаптенами. В этих случаях аллергическая реак­ция возникает не раньше чем через 5 дней и длится 2—3 нед. Видимо, здесь играют роль замедленное действие конъюгированных белков на лимфоидную ткань и сенсибилизация Т-лимфоцитов.

Контактная аллергия возникает, если антигенами являются низкомолекулярные органические и неорганические вещества, которые в организме соединяются с белками, образуя конъюгаты. Конъюгированные соединения, выполняя роль гаптенов, вы­зывают сенсибилизацию. Контактная аллергия может возникать при длительном контакте с химическими веществами, в том числе фармацевтическими препаратами, красками, косметичес­кими препаратами (губная помада, краска для ресниц). Прояв­ляется контактная аллергия в виде всевозможных дерматитов, т. е. поражений поверхностных слоев кожи.

Значение. Все реакции гиперчувствительности, в том числе и ГЗТ, имеют большое значение. Их механизмы лежат в основе воспаления, которое способствует локализации инфекционного агента или иного антигена в пределах определённых тканей и формированию полноценной иммунной реакции защитного характера.

37. Методы микроскопии (люминесцентная, темнопольная, фазо-контрастная).

Люминесцентная (или флюоресцентная) микроскопия. Осно­вана на явлении фотолюминесценции.

Люминесценция — свечение веществ, возникающее после воз­действия на них каких-либо источников энергии: световых, элек­тронных лучей, ионизирующего излучения. Фотолюминесцен­ция — люминесценция объекта под влиянием света. Если осве­щать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В ре­зультате возникает цветное изображение объекта.

Темнопольная микроскопия. Микроскопия в темном поле зре­ния основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в био­логическом микроскопе .

Фазово-контрастная   микроскопия.   Фазово-контрастное  приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным — светлое изображение объек­та на темном фоне.

Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители.

Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способно­сти светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмик­роскопических объектов.

38. Гиперчувствительность немедленного типа. Гиперчувствительность немедленного типа (ГНТ) — ги­перчувствительность, обусловленная антителами (IgE, IgG,IgM) против аллергенов. Развивается через не­сколько минут или часов после воздействия аллергена: рас­ширяются сосуды, повышается их проницаемость, развивают­ся зуд, бронхоспазм, сыпь, отеки. Поздняя фаза ГНТ дополня­ется действием продуктов эозинофилов и нейтрофилов.

К ГНТ относятся I, II и III типы аллергических реакций (по Джеллу и Кумбсу): I тип — анафилактический,обусловлен­ный главным образом действием IgE; II тип — цитотоксический, обусловленный действием IgG, IgM;III тип — иммунокомплексный, развивающийся при образовании иммунного комплекса IgG, IgM с антигенами. В отдельный тип выделяют антирецепторные реакции.

Основные типы реакций гиперчувствительности

I тип — анафилактический. При первичном контакте с ан­тигеном образуются IgE, которые прикрепляются Fc-фрагментом к тучным клеткам и базофилам. Повторно вве­денный антиген перекрестно связывается с IgE на клетках, вызывая их дегрануляцию, выброс гистамина и других медиа­торов аллергии.

Первичное поступление аллергена вызывает продук­цию плазмоцитами IgE, IgG4. Синтезированные IgEприкрепляются Fc-фрагментом к Fc-peцепторам (FceRl) базофилов в крови и тучных клеток в слизистых оболочках, соединительной ткани. При повторном поступ­лении аллергена на тучных клетках и базофилах образуются комплексы IgE с аллергеном (перекрестная сшивка FceRl анти­геном), вызывающие дегрануляцию клеток.

Клинические проявления гиперчувствительности типа.

Клинические проявления гиперчувствительности I типа могут протекать на фоне атопии. Атопия — наследственная предрасположенность к развитию ГНТ, обусловленная повы­шенной выработкой IgE-антител к аллергену, повышенным количеством Fc-рецепторов для этих антител на тучных клет­ках, особенностями распределения тучных клеток и повы­шенной проницаемостью тканевых барьеров.

Анафилактический шок — протекает остро с развитием коллапса, отеков, спазма гладкой мускулатуры; часто заканчи­вается смертью. Крапивница — увеличивается проницае­мость сосудов, кожа краснеет, появляются пузыри, зуд. Бронхиальная астма — развиваются воспаление, бронхо-спазм, усиливается секреция слизи в бронхах.

II тип — цитотоксический. Антиген, расположенный на клетке «узнается» антителами классов IgG, IgM. При взаимо­действии типа «клетка-антиген-антитело» происходит актива­ция комплемента и разрушение клетки по трем направлениям: комплементзависимый цитолиз; фагоцитоз; антителозависимая клеточная цитотоксичность. Время реакции — минуты или часы.

Ко II типу гиперчувствительности близки антирецепторные реакции (так называемый IV тип гиперчувствительности), основой которых являются антирецепторные антитела, на­пример антитела против рецепторов к гормонам.

Клинические проявления II типа. По II типу гиперчувствительнос­ти развиваются некоторые аутоиммунные болезни, обуслов­ленные появлением аутоантител к антигенам собственных тканей: злокачественная миастения, аутоиммун­ная гемолитическая анемия, вульгарная пузырчатка, синдром Гудпасчера, аутоиммунный гипертиреоидизм, инсулинозависимый диабет II типа.

Аутоиммунную гемолитическую анемию вызывают анти­тела против Rh-антигена эритроцитов; эритроциты разруша­ются в результате активации комплемента и фагоцитоза. Ле­карственно-индуцируемые гемолитическая анемия, гранулоцитопения и тромбоцитопения сопровождаются появле­нием антител против лекарства — гаптена и цитолизом кле­ток, содержащих этот антиген.

III тип — иммунокомплексный. Антитела классов IgG, IgM образуют с растворимыми антигенами иммунные комплексы, которые активируют комплемент. При избытке антигенов или недостатке комплемента иммунные комплексы откладывают­ся на стенке сосудов, базальных мембранах, т. е. структурах, имеющих Fc-рецепторы.

Первичными компонентами III типа гиперчувствительности являются растворимые иммунные комплексы антиген-анти­тело и комплемент (анафилатоксины С4а, СЗа, С5а). При из­бытке антигенов или недостатке комплемента иммунные комплексы откладываются на стенке сосудов, базальных мем­бранах, т.е. структурах, имеющих Fc-рецепторы. Поврежде­ния обусловлены тромбоцитами, нейтрофилами, иммунными комплексами, комплементом. Привлекаются провоспалительные цитокины, включая TNF-a и хемокины. На поздних стади­ях в процесс вовлекаются макрофаги.

Реакция может быть общей (например, сывороточная бо­лезнь) или вовлекать отдельные органы, ткани, включая ко­жу (например, системная эритематозная волчанка, реакция Артюса), почки (например, волчаночный нефрит), легкие (например, аспергиллез) или другие органы. Эта реакция может быть обусловлена многими микроорганизмами. Она развивается через 3-10 часов после экспозиции антигена, как в реакции Артюса. Антиген может быть экзогенный (хро­нические бактериальные, вирусные, грибковые или протозойные инфекции) или эндогенный, как при системной эритематозной волчанке.

Клинические проявления III типаСывороточная болезнь происходит при введении высоких доз антигена, например лошадиной противостолбнячной сы­воротки. Через 6-7 дней в крови появляются антитела про­тив лошадиного белка, которые, взаимодействуя с данным антигеном, образуют иммунные комплексы, откладывающие­ся в стенках кровеносных сосудов и тканях. Развиваются си­стемные васкулиты, артриты (отложение комплексов в суста­вах), нефрит (отложение комплексов в почках).

Реакция Артюса развивается при повторном внутрикожном введении антигена, который локально образует иммун­ные комплексы с ранее накопившимися антителами. Прояв­ляется отеком, геморрагическим воспалением и некрозом.

39. Основные принципы классификации микробов.