
- •Раздел 1. Введение в курс.
- •Комплексное использование сырья
- •Совершенствование методов выделения целевых продуктов и очистки всех потоков, которые попадают в окружающую среду.
- •Комбинирование производств
- •Повышение степени энергосбережения на предприятиях химической промышленности
- •Создание агрегатов большой единичной мощности
- •Интенсификация хтп
- •Раздел 2. Разработка химической концепции метода.
- •Время пребывания исходных веществ в реакционной зоне.
- •Объемная скорость
- •Алгоритм разработки химической концепции хтп
- •Термодинамический анализ
- •Изобарно-изотермический потенциал (энергия Гиббса)
- •Связь константы с равновесным выходом
- •Связь константы равновесия с энергией Гиббса
- •Анализ зависимостей изменения константы равновесия от температуры при различных знаках ∆н и ∆s реакции.
- •Качественная оценка условий проведения процесса.
- •Влияние температуры
- •Влияние соотношения реагентов на их степень превращения и выход продукта
- •Соотношение реагентов – стехиометрическое
- •Один из реагентов - в избытке
- •Влияние величины общего давления
- •Влияние введения в систему инертного компонента (d), при сохранении величины общего давления
- •Вывод продукта из зоны реакции
- •Понятие элементарной реакции
- •Простые по механизму и стехиометрически простые реакции
- •Зависимость константы скорости элементарной реакции от температуры
- •Зависимость дифференциальной селективности от концентраций реагирующих веществ
- •Зависимость дифференциальной селективности от температуры
- •Особенности кинетики окисления оксида азота (II) в оксид азота (IV)
- •Скорость обратимых реакций
- •Обратимая эндотермическая реакция
- •Раздел 3. Химическое производство как химико-технологическая система (хтс).
- •Раздел 4. Основные принципы разработки хтс и способы их реализации.
- •Принцип наилучшего использования сырья.
- •Избыток реагентов ускоряет как химическую, так и диффузионную стадии процессов.
- •Подавление побочных реакций.
- •Принцип наибольшей интенсивности процесса.
- •Принцип наилучшего использования энергии.
- •Принцип экологической безопасности химических производств.
- •Раздел 5. Реализация основных принципов разработки и организации хтс на примерах конкретных производств.
- •Производство технологических газов конверсией метана.
- •Паровая конверсия
- •Термодинамика процесса
- •Кинетика процесса
- •Выбор оптимальных условий для проведения паровой конверсии метана
- •Катализатор и температура
- •Соотношение исходных веществ
- •Паровоздушная конверсия метана
- •Паровая конверсия монооксида углерода
- •Термодинамика процесса
- •Кинетика процесса
- •Выбор оптимальных условий для проведения паровой конверсии монооксида углерода
- •Катализаторы и температура
- •Соотношение исходных веществ
- •Очистка от диоксида углерода
- •Моноэтаноламиновая очистка
- •Карбонатная очистка
- •Очистка от монооксида углерода
- •Промывка жидким азотом
- •Тонкая очистка метанированием
- •Катализаторы синтеза аммиака.
- •Производство метанола.
- •5.6. Производство этанола.
-
Очистка от диоксида углерода
-
Моноэтаноламиновая очистка
Диоксид углерода поглощается 20 % раствором моноэтаноламина (МЭА) при температуре 25 - 30°С и давлении 1- 3 МПа.
Процесс очистки основан на свойстве МЭА в водных растворах образовывать карбонаты и гидрокарбонаты:
RNH2 + СО2 + Н2О → (RNH3)НСО3 (13)
(RNH3)НСО3 + RNH2 → (RNH3)2СО3 (14) , где R - HОCH2CH2 -
Водные растворы МЭА обладают высокой поглощающей способностью и легко регенерируются. При температуре выше 100°С карбонаты и гидрокарбонаты распадаются с выделением диоксида углерода, а раствор МЭА рециркулируется. Особенности схемы очистки зависят в значительной мере от общей схемы производства. В производствах аммиака и водорода с низкотемпературной конверсией монооксида углерода очистка от диоксида углерода проводится под давлением 1- 3 МПа до остаточного содержания диоксида углерода 0,01 - 0,1 %.
-
Карбонатная очистка
В этом варианте используют горячие растворы поташа (К2СО3) в соответствии с реакцией:
К2СО3 + СО2 + Н2О ↔ 2КНСО3 (15)
Реакция обратима, при повышении давления равновесие процесса сдвигается вправо.
При понижении давления, например, от 2,8 МПа (давление газа, направляемого на очистку) до 0,65 МПа восстанавливается К2СО3.
Образующийся в данном процессе диоксид углерода может быть использован для получения карбамида (мочевины):
СО2 + 2NH3 = СО(NH2)2 + Н2О (16)
-
Очистка от монооксида углерода
-
Промывка жидким азотом
После удаления основной массы диоксида углерода азотоводородная смесь поступает на очистку от монооксида углерода путем промывки жидким азотом при температуре – -192°С. При этом в жидком азоте растворяются кроме монооксида углерода, диоксид углерода, аргон и метан.
Глубокая очистка азотоводородной смеси вызвана наличием в системе производства аммиака многократной циркуляции, при которой в циркулирующем газе накапливаются не только каталитические яды, но и инертные примеси (главным образом, метан).
-
Тонкая очистка метанированием
Метанирование проводится при температуре 250 - 350°С на катализаторе конверсии метана - Ni/α-Al2O3 в специальном реакторе и описывается реакциями:
СО + 3Н2 ↔ СН4 + Н2О (17) ΔН = - 206,4 кДж
СО2 + 4Н2 ↔ СН4 + 2Н2О (18) ΔН = - 165,3 кДж
Остаточные количества кислорода также реагируют:
0,5О2 + Н2 ↔ Н2О (19)
При температуре 250 - 350°С указанные реакции протекают необратимо и идут с большим выделением тепла.
Схема:
Природный газ сжимают в компрессоре 1 до давления 4,6 МПа, смешивают с азотоводородной смесью (авс : природный газ=1:10) и подают в огневой подогреватель 2. Далее нагретый газ подвергается очистке от сернистых соединений: в реакторе 3 на алюмо-кобальт-молибденовом катализаторе путем гидрирования сераорганических соединений до сероводорода, а затем в адсорбере 4 сероводород поглощается сорбентом на основе оксида цинка.
Очищенный газ смешивается с водяным паром в отношении 1:3,7 и полученная парогазовая смесь поступает в конвекционную зону трубчатой печи 12. В радиационной камере печи размещены трубы, заполненные катализатором конверсии метана, и горелки, в которых сжигается природный газ. Полученные в горелках дымовые газы обогревают трубы с катализатором, затем теплота этих газов дополнительно рекуперируется в конвекционной камере, где размещены подогреватели парогазовой и паровоздушной смеси, перегреватель пара высокого давления, подогреватели питательной воды и природного газа.
Парогазовая смесь нагревается и под давлением распределяется сверху вниз по большому числу параллельно включенных труб, заполненных катализатором. Выходящая из трубчатого реактора парогазовая смесь содержит 9-10 % метана. При температуре 850°С конвертированный газ поступает в конвектор метана II-ой ступени 13 – реактор шахтного типа.
В верхнюю часть конвертора 13 компрессором 19 подается технологический воздух, нагретый в конвекционной зоне печи до 500°С парогазовая и паровоздушная смеси, поступают в реактор раздельными потоками. Затем газ направляется в котел-утилизатор 14, вырабатывающий пар давлением 10,5 МПа. Здесь реакционная смесь охлаждается с 1000 до 420°С и поступает в конвертор СО первой ступени 15, где на железохромовом катализаторе протекает конверсия основного количества оксида углерода водяным паром. Выходящая из реактора при температуре 450°С газовая смесь содержит около 3,6 % СО. В паровом котле 16, в котором также вырабатывается пар давлением 10,5 МПа, парогазовая смесь охлаждается до 225°С и подается в конвертор СО второй ступени 17, заполненный низкотемпературным катализатором, где содержание СО снижается до 0,5 %.
Конвертированный газ на выходе из конвектора 17 имеет следующий состав (%): Н2 – 61,7; CO2 – 17,4; CO – 0,5; N2 + Ar – 20,1; CH4 – 0,3.
1-компрессор природного газа, 2 –огневой подогреватель, 3 –реактор гидрирования сернистых соединений, 4 –адсорбер, 5 –дымосос, 6, 7, 9, 10 –подогреватели природного газа, питательной воды, паровоздушной и парогазовой смесей соответственно, 8 –пароперегреватель, 11 –реакционные трубы, 12 –трубчатая печь (конвектор метана первой ступени), 12 –шахтный конвектор метана второй ступени, 14, 16 –паровые котлы, 15, 17 –конвекторы оксида углерода первой и второй ступеней, 18 –теплообменник, 19 –компрессор воздуха.
-
Производство аммиака.
Равновесие и кинетика процесса. Выбор оптимальных условий процесса: катализатора, температуры, давления, соотношения реагентов, объемной скорости процесса. Обоснование наличия рецикла в системе. Технологическая схема производства аммиака. Колонна синтеза, конденсационная колонна. Реализация технологических принципов в производстве аммиака.
N2+3H2↔2NH3; ΔH298=-91,96 кДж/моль
Реакция обратимая, экзотермическая. При высоких температурах энтальпия становится еще более экзотермической (ΔH725=-112,86 кДж/моль).
Реакция синтеза аммиака обратимая, поэтому полного превращения азота и водорода в аммиак за время их однократного прохождения через аппарат не происходит. Условия равновесия процесса и кинетические закономерности его протекания на железных катализаторах обуславливают возможность превращения в аммиак только 20-40% исходной реакционной смеси. Для более полного использования реагентов необходима их многократная циркуляция через колонну синтеза.
-
Согласно принципу Ле Шателье при нагревании равновесие смещается влево, в сторону уменьшения выхода аммиака.
-
Обоснование выбора давления процесса синтеза аммиака.
Термодинамические и кинетические факторы (равновесное содержание аммиака и скорость реакции) свидетельствуют в пользу высоких давлений. Конденсация аммиака из газовой смеси также облегчается при высоких давлениях. Однако при этом имеет место значительный расход энергии на компрессию и повышенные требования к машинам, аппаратам и арматуре. При пониженных давлениях упрощается аппаратурное оформление процесса, снижается расход энергии на компрессию, при этом несколько увеличиваются энергозатраты на циркуляцию газа и выделение аммиака. Наиболее экономичным является среднее давление порядка 30 МПа.
Поскольку присутствие инертных примесей в реакционной смеси равносильно снижению общего давления, то с увеличением содержания метана, аргона и гелия в смеси скорость реакции синтеза уменьшается.
Скорость прямой реакции обратно пропорциональна парциальному давлению аммиака. Таким образом, с повышением содержания аммиака общая скорость реакции падает. Увеличение объемной скорости смеси приводит к уменьшению прироста содержания аммиака и, тем самым к росту средней скорости и повышению производительности процесса.