Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проектирование системы.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.98 Mб
Скачать

2.5.7.3. Расчет передаточной функции при цифровом регулировании положения

Применение цифровой позиционной системы управления определяется следующими факторами:

  • требуется высокая статическая точность – примерно 0,05 % максимального значения регулируемой величины и выше;

  • заданное значение регулируемой величины и ее приращение выдается в цифровом коде от УВМ (или ЛСА). Применение в этом случае аналогового устройства регулирования не только снизит точность системы, но и затруднит связь с УВМ и индикацию положения механизма;

  • измерение фактического значения регулируемой величины осуществляется дискретным датчиком положения. В современных унифицированных системах выбор дискретного или аналогового представления сигналов управления определяется рядом критериев: минимальным количеством оборудования, помехоустойчивостью, оптимальными статическими и динамическими характеристиками, конструктивными параметрами, эксплуатационными требованиями и стоимостью. Наиболее распространенной структурой является система подчиненного управления с цифровым контуром положения а аналоговыми контурами регулирования остальных параметров. Такая структура обеспечивает высокую статическую точность и достаточное быстродействие. В то же время к быстродействию цифровой аппаратуре управления при использовании ее в контуре положения не предъявляют особо жестких требований. Дальнейшее повышение быстродействия цифровых устройств управления позволит создавать позиционные системы с цифровыми контурами положения и скорости.

Одним из основных элементов, определяющих точность цифровой системы управления, является цифровой датчик положения. Он выполняет операцию квантования измеряемой величины по уровню. Одновременно сигнал датчика квантирован во времени, но этот параметр не воспринимается контуром регулирования положения.

Основной величиной, определяющей точность позиционной системы управления, является шаг квантирования датчика. По принципу работы цифровые датчики пути делят на датчики приращения (импульсные) и датчики абсолютного значения (позиционно-кодовые). Импульсные датчики выдают определенное число импульсов на оборот входного вала и позволяют определить частоту (скорость) и направление вращения.

Импульсные датчики унифицированных систем выполняют на основе фотоэлектрических преобразователей или вращающихся трансфоматоров. Датчики обеих систем выдают два синусоидальных напряжения, сдвинутых по фазе на угол 90 . Сдвиг напряжений выходных каналов обеспечивается пространственным расположением устройств считывания (фотодиодов, обмоток вращающихся трансформаторов).

Определение направления вращения выполняется по очередности следования импульсов каналов. Для увеличения числа импульсов на оборот на выходе каналов включают умножители частоты. В системе УБСР-Д предусмотрены импульсные датчики двух типов: на фотопреобразователях и основе вращающихся трансформаторов. На выходе каналов датчиков включены формирователи, преобразующие синусоидальные сигналы датчиков в прямоугольные импульсы.

Позиционно-кодовые датчики преобразуют положение механизма, отсчитываемое от условного нуля, в пропорциональную цифровую величину в параллельном коде. Датчики построены на основе кодирующих дисков и фотоэлектрического считывания информации, индуктивно-трансформаторных компенсационно-считывающих элементов или ферромагнитных кодовых шкал. Считывание осуществляется обычно в одном из видов двоичного кода. Информация в счетные устройства передается через преобразователи кодов.

С целью повышения точности отсчета положения кодовые датчики соединяют через редуктор аналогично сельсинным системам точного и грубого отсчета. Однако применение высокоточных и безлюфтовых редукторов для соединения кодовых датчиков между собой и с механизмом существенно снижает надежность электроприводов.

Определение основных параметров цифровых узлов цифро-аналоговых систем регулирования положения основано на требованиях, предъявляемых к статическим и динамическим параметрам позиционного привода. Позиционная система регулирования содержит цифровые устройства задания, реверсивный счетчик, сумматор и цифроаналоговый преобразователь ЦАП. Исходными данными, кроме параметров привода и аналоговых контуров регулирования, являются:

  • дискретность задания ;

  • максимальное перемещение ;

  • максимальный путь торможения ;

  • допустимая статическая ошибка .

По этим данным определяют шаг квантирования по уровню позиционной системы, числовую емкость и число разрядов реверсивного счетчика, блока задания и цифро-аналогового преобразователя, а также период цикла квантирования, при котором информация на входе ЦАП не меняется.

Шаг квантирования (цена единицы младшего разряда) реверсивного счетчика) равен угловому или линейному перемещению, при котором формируется один импульс. Число импульсов, приходящихся на один оборот датчика, является неизменным параметром, поэтому при шаге квантирования датчика, превышающем статическую ошибку, вводят повышающий редуктор между механизмом и датчиком. Дискретность задания должна быть кратной шагу квантирования . Если шаг квантирования настолько мал, что пропорциональный регулятор скорости не обеспечивает его отработки, то применяют ПИ-регулятор скорости.

Емкость реверсивного счетчика и сумматора равна:

; (2.85)

Число двоичных разрядов определяется выражением:

; (2.86)

Число разрядов устройства задания равно числу разрядов сумматора и реверсивного счетчика.

Разрядность ЦАП определяется величиной максимального пути торможения:

; (2.87)

Число разрядов ЦАП определяется после нахождения

; (2.88)

Частота квантирования по времени определяется по формуле:

; (2.89)

где: при , выраженному в метрах в сек, величину выражают в метрах.