Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Микропроцессоры (конспект).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
972.29 Кб
Скачать

1.11 Устройства ввода/вывода дискретных сигналов

Дискретные сигналы (включено-выключено) широко используются в системах управления.

Изменение значения дискретного сигнала называется событием.

Часто для обработки входных и формирования выходных событий в микроконтроллерах используются специальные периферийные устройства, осуществляющие быстрый ввод и быстрый вывод без непосредственного участия процессора.

Быстрый ввод заключается в обнаружении события определенного типа на определенном входе микроконтроллера и запоминание времени его наступления в заданной системе отсчета времени. Быстрый вывод заключается в формировании события определенного типа на заданном выходе микроконтроллера в заданный момент времени.

Для выполнения операций быстрого ввода и вывода в микроконтроллерах разных типов используются или блок быстрого ввода-вывода (HSIO), или блок процессоров событий (EPA).

В обоих блоках для формирования текущего значения времени используются таймеры-счетчики, на счетные входы которых подаются сигналы времени от внутреннего генератора или от внешнего источника.

В блоке быстрого ввода-вывода (HSIO) для обработки входных событий и формирования выходных событий используются специализированные модули для ввода и для вывода, а в блоке процессоров событий (EPA) содержится набор универсальных модулей, каждый из которых при программировании настраивается на работу или в режиме быстрого ввода (capture-захвата) или в режиме быстрого вывода (compare-сравнения).

По результатам обработки входных событий могут вычисляться параметры импульсных последовательностей на входах микроконтроллера – период следования импульсов, их длительность, сдвиг во времени между импульсами на разных входах и другие параметры.

Блоки HSIO и EPA кроме операций быстрого ввода и вывода могут использоваться для формирования временных задержек (режим программного таймера) формирования сигналов специальной формы (например, сигнала с широтно-импульсной модуляцией), запуска аналого-цифрового преобразователя и выполнения некоторых других функций.

1.12 Устройства ввода/вывода аналоговых сигналов

У микроконтроллеров большинства типов в число периферийных устройств входит многоканальный аналого-цифровой преобразователь (ADC). Число каналов может быть равно 4, 6,8, 13 или 14. Входное напряжение в канале может изменяться в пределах от 0 до 5 (5,12)В. В результате преобразования формируется восьмиразрядный или десятиразрядный двоичный код.

Запуск преобразования в канале может производиться по команде в программе или по сигналу из блока HSIO или ЕРА в заранее заданное время. Некоторые преобразователи могут работать в режиме сканирования входов.

Преобразование цифровых данных в аналоговый сигнал выполняется с использованием широтно-импульсного модулятора (PWM). Широтно-импульсный модулятор формирует последовательность прямоугольных импульсов, следующих с постоянным периодом. Длительность импульса пропорциональна числу, преобразуемому в значение аналогового сигнала. Получаемая импульсная последовательность с выхода микроконтроллера с переменной скважностью подается на внешнюю интегрирующую схему, с выхода которой снимается аналоговый сигнал.

В микроконтроллерах может присутствовать специальный блок содержащий три широтно-импульсных модулятора, работающих совместно. Этот блок, называемый генератором периодических колебаний (WG), он имеет три пары выходов. Разность напряжений на выходах одной пары представляет собой синусоидоподобный ступенчатый сигнал. Сигналы, снимаемые с трех пар выходов, могут быть использованы для питания трехфазных индукционных двигателей переменного тока. Блок позволяет также формировать сигналы для управления вентильными двигателями постоянного тока, шаговыми двигателями и для некоторых других целей.

аналого-цифровые преобразователи

Аналого-цифровой преобразователь ADC (Analog Digital Converter) осуществляет преобразование напряжения в цифровой код. Он предназначен для оцифровки и ввода в микроконтроллер аналоговых сигналов с различных датчиков физических величин. Схемы преобразователей различны. В зависимости от принципа построения меняются и свойства преобразователя.

Принципы аналого-цифрового преобразования.

Параллельный преобразователь

В параллельном преобразователе (рис. 1.8) входной сигнал подается сразу на множество компараторов, осуществляющих сравнение сигнала с опорными напряжениями. Опорные напряжения формируются цепочкой резисторов, делящих эталонное напряжение U0 на равные части.

Рисунок 1.8 Параллельный аналого-цифровой преобразователь.

Такие схемы ADC работают очень быстро, но сложны и используются редко.

Преобразователь последовательного приближения

Основными элементами преобразователя (рис. 1.9) является регистр последовательных приближений, код из которого с помощью цифроаналогового преобразователя преобразуется в напряжение. Компаратор СМР сравнивает входное напряжение с выходным напряжением преобразователя и через устройство управления воздействует на регистр.

Рисунок 1.9 Преобразователь последовательного приближения

Преобразование выполняется за несколько тактов. В первом такте в старший разряд регистра последовательных приближений записывается единица. Если в результате сравнения на выходе компаратора устанавливается единичный сигнал, единица в старшем разряде регистра сохраняется. В противном случае - сбрасывается. Далее, в том же порядке, формируется второй по старшинству разряд результата, потом - третий и т.д. Для получения результата необходимо n тактов, где число n равно разрядности преобразователя.