
- •Глава первая общие понятия о релейной защите
- •1.1. Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •1.4. Ненормальные режимы
- •1.5. Основные требования, предъявляемые к устройствам релейной защиты
- •1.6. Структурные части и основные элементы рз
- •1.7. Виды устройств рз
- •1.8. Изображение схем рз на чертежах
- •1.9. Источники и схемы оперативного тока
- •Глава вторая принципы построения измерительных и логических органов релейной защиты
- •2.1. Общие принципы конструктивного исполнения реле
- •2.2. Электромеханические реле
- •2.3. Конструкции реле, выполняемых на электромагнитном принципе
- •2.4. Промежуточные реле (логические элементы)
- •2.5. Указательные реле
- •2.6. Реле времени
- •2.7. Поляризованные реле
- •2.8. Индукционные реле
- •2.9. Реле тока на индукционном принципе
- •2.10. Индукционные реле тока серий рт-80 и рт-90
- •2.11. Индукционные реле направления мощности
- •2.12. Магнитоэлектрические реле
- •2.13. Измерительные органы на полупроводниковой элементной базе
- •2.14. Типовые функциональные элементы полупроводниковых ио
- •2.15. Аналоговые микросхемы, используемые для построения функциональных элементов ио
- •2.16. Основные схемы включения операционных усилителей, используемые в устройствах рз
- •2.17. Простейшие функциональные элементы, выполняемые на оу
- •2.18. Схемы сравнения двух электрических величин
- •2.19. Измерительные органы тока и напряжения на имс
- •2.20. Измерительные органы (реле) с двумя входными величинами на интегральных микросхемах
- •2.21. Элементы логической и исполнительной частей устройств рз
- •2.22. Органы логики на имс
- •Глава третья трансформаторы тока и схемы их соединения
- •3.1. Трансформаторы тока и их погрешности
- •3.2. Параметры, влияющие на уменьшение намагничивающего тока
- •3.3. Требования к точности трансформаторов тока, питающих рз
- •3.4. Выбор трансформаторов тока и допустимой вторичной нагрузки
- •3.5. Типовые схемы соединения обмоток трансформаторов тока
- •3.6. Нагрузка трансформаторов тока
- •3.7. Фильтры симметричных составляющих токов
- •3.8. Новые преобразователи первичного тока
- •Глава четвертая максимальная токовая защита
- •4.1. Принцип действия токовых зашит
- •4.2. Максимальная токовая зашита лэп
- •4.3. Схемы мтз на постоянном оперативном токе
- •4.4. Поведение мтз при двойных замыканиях на землю
- •4.5. Выбор тока срабатывания
- •4.6. Выдержки времени защиты
- •4.7. Максимальная токовая защита с пуском от реле напряжения
- •4.8. Максимальные токовые защиты на переменном оперативном токе
- •4.9. Максимальные токовые защиты с реле прямого действия
- •4.10. Общая оценка и область применения мтз
- •Глава пятая токовые отсечки
- •5.1. Принцип действия токовых отсечек
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •5.6. Отсечки с выдержкой времени
- •Вопросы для самопроверки
- •Глава шестая трансформаторы напряжения и схемы их соединения
- •6.1. Основные сведения
- •6.2. Погрешности трансформатора напряжения
- •6.3. Схемы соединения трансформаторов напряжения
- •6.4. Повреждения в цепях тн и контроль за их исправностью
- •6.5. Емкостные делители напряжения
- •6.6. Фильтр напряжений обратной последовательности
- •Глава седьмая токовая направленная защита
- •7.1. Необходимость направленной защиты в сетях с двусторонним питанием
- •7.2. Функциональная схема и принцип действия токовой направленной защиты
- •7.3. Схемы включения реле направления мощности
- •7.4. Поведение реле направления мощности, включенных на токи неповрежденных фаз
- •7.5. Схемы направленной максимальной токовой защиты
- •7.6. Выбор уставок срабатывания
- •7.7. Мертвая зона
- •7.8. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •Глава восьмая защита от коротких замыканий на землю в сети с глухозаземленной нейтралью
- •8.1. Общие сведения
- •8.2. Максимальная токовая защита нулевой последовательности
- •8.3. Токовые направленные защиты нулевой последовательности
- •8.4. Отсечки нулевой последовательности
- •8.5. Ступенчатая токовая защита нулевой последовательности
- •8.6. Выбор уставок токовых защит нулевой последовательности
- •8.7. Оценка и область применения токовых ступенчатых защит нп
- •Глава девятая защита от однофазных замыканий на землю в сети с изолированной нейтралью
- •9.1. Токи и напряжения при однофазном замыкании на землю
- •9.2. Основные требования к защите
- •9.3. Принципы выполнения защиты от однофазных замыканий на землю
- •9.4. Фильтры токов и напряжений нулевой последовательности
- •9.5. Токовая защита нулевой последовательности
- •9.6. Направленная защита
- •9.7. Защита, реагирующая на высшие гармоники тока в установившемся режиме
- •9.8. Защиты, реагирующие на токи переходного режима
- •Глава десятая дифференциальная защита линий
- •10.1. Принцип действия продольной дифференциальной защиты
- •10.2. Токи небаланса в дифференциальной защите
- •10.3. Общие принципы выполнения продольной дифференциальной защиты линии
- •10.4. Дифференциальные реле с торможением
- •10.5. Полная схема дифференциальной защиты линий
- •10.6. Устройство контроля исправности соединительных проводов
- •10.7. Продольная дифференциальная защита линий типа дзл
- •10.8. Оценка продольной дифференциальной защиты
- •10.9. Принцип действия и виды поперечных дифференциальных защит параллельных линий
- •10.10. Токовая поперечная дифференциальная зашита
- •10.11. Направленная поперечная дифференциальная защита
- •10.12. Оценка направленных поперечных дифференциальных защит
- •Глава одиннадцатая дистанционная защита
- •11.1. Назначение и принцип действия
- •11.2. Характеристики выдержки времени дистанционных защит
- •11.3. Принципы выполнения селективной защиты сети с помощью ступенчатой дистанционной защиты
- •11.4. Структурная схема дистанционной защиты со ступенчатой характеристикой
- •11.5. Схемы включения дистанционных и пусковых измерительных органов на напряжение и ток сети
- •11.6. Характеристики срабатывания реле сопротивления и их изображение на комплексной плоскости
- •11.7. Общие принципы выполнения реле сопротивления, используемых в дз в качестве измерительных органов, и требования к их конструкциям
- •11.8. Реле сопротивления на диодных схемах сравнения абсолютных значений двух электрических величин
- •11.9. Реле сопротивления на сравнении фаз двух электрических величин. Выполняемые на имс
- •11.10. Схемы трех основных функциональных элементов pc, построенных на сравнении фаз
- •11.11. Реле сопротивления со сложными характеристиками срабатывания, выполненные на имс
- •11.12. Пусковые органы дистанционных защит
- •11.13. Погрешность срабатывания pc, обусловленная током Iр
- •11.14. Искажение действия дистанционных органов
- •11.16. Выполнение схем дистанционных защит
- •11.17. Дистанционная защита типа шдэ-2801, выполняемая на имс
- •11.18. Выбор уставок дистанционной защиты
- •11.19. Оценка дистанционной защиты
- •Глава двенадцатая предотвращение неправильных действий защиты при качаниях
- •12.1. Характер изменения тока, напряжения и сопротивления на зажимах реле при качаниях
- •12.2. Поведение защиты при качаниях
- •12.3. Меры по предотвращению неправильных действий рз при качаниях
- •12.4. Блокирующее устройство, реагирующее на несимметрию токов или напряжений сети
- •12.5. Устройство блокировки при качаниях, реагирующее на скорость изменения тока, напряжения или сопротивления
- •12.6. Блокирующее устройство, реагирующее на скачкообразное приращение электрических величин (векторов тока прямой и обратной последовательностей)
- •Глава тринадцатая высокочастотные защиты
- •13.1. Назначение и виды высокочастотных защит
- •13.2. Принцип действия направленной защиты с вч-блокировкой
1.3. Векторные диаграммы токов и напряжений при кз
Назначение и условия построения векторных диаграмм. Для уяснений условий работы реле удобно использовать векторные диаграммы подведенных к ним напряжений и токов. За основу построения векторных диаграмм приняты следующие исходные положения: для упрощения рассматривается начальный момент КЗ на ЛЭП с односторонним питанием при отсутствии нагрузки (рис.1.3, а); для получения действительных углов сдвига фаз между токами и напряжениями учитывается падение напряжения не только в индуктивном, но и в активном сопротивлении R цепи КЗ; электрическая система, питающая место КЗ, заменяется одним эквивалентным генератором с фазными ЭДС ЕА, ЕВ, ЕС, представляющими симметричную и уравновешенную1 систему векторов, относительно которых строятся векторы токов и напряжений [11, 18].
Для упрощения построения диаграмм обычно рассматриваются металлические КЗ, при которых переходное сопротивление в месте замыкания RП = 0. За положительное направление токов принимается их направление от источника питания к месту повреждения, соответственно положительными считаются ЭДС и падения напряжения, направления которых совпадают с направлением положительного тока.
Векторная диаграмма при трехфазном КЗ. На рис.1.4, а показана ЛЭП, на которой возникло металлическое замыкание трех фаз в точке К. Построение векторной диаграммы (рис.1.4, б) начинается с фазных ЭДС ЕА, ЕВ, ЕС. Под действием фазных ЭДС в каждой фазе возникает ток КЗ:
где ЕФ – фазная ЭДС системы; ZС, RС, XС; ZЛ.К, RЛ.К, XЛ.К – противления системы и поврежденного участка ЛЭП (рис. 1.4, а).
Токи IАк=IВк=IСк=Iк имеют сдвиг по фазе относительно соответствующих ЭДС:
1Уравновешенной называется система векторов, геометрическая сумма которых равна нулю.
ис.1.4.
Трехфазное КЗ:
а – схема; б — векторная диаграмма токов и напряжений
Напряжения в точке К равны нулю: UАк=UВк=UСк=0. Фазные напряжения в месте установки РЗ, в точке Р (рис.1.4, а), UАР=IАкRЛ.К+jIАкXЛ.К определяются на диаграмме (рис.1.4, б) как сумма падений напряжения в активном сопротивлении IАкRЛ, совпадающего по фазе с вектором IАк, и в реактивном сопротивлении IАкXЛ , сдвинутого на 90° относительно IАк. Аналогично строятся векторы UBP и UCP. Модули (абсолютные значения) UAP, UBP, UCP имеют одинаковые значения, каждый из этих векторов опережает ток одноименной фазы на угол φк = arctg(XЛ.К/RЛ.К). Для ЛЭП 35 кВ этот угол равен 45 – 55°, 110 кВ – 60–78°, 220 кВ (один провод в фазе) – 73–82°, 330 кВ (два провода в фазе) – 80–85°, 500 кВ (три провода в фазе) – 84–87°, 750 кВ (четыре провода в фазе) – 86–88°. Большее значение φк соответствует большему сечению провода, так как чем больше сечение, тем меньше R.
И
з
рассмотренных диаграмм трехфазных КЗ
следует: 1) векторные диаграммы токов и
напряжений являются симметричными и
уравновешенными, так как в них отсутствуют
составляющие обратной и нулевой
последовательностей; 2) трехфазное КЗ
сопровождается резким снижением всех
междуфазных напряжений (как в месте КЗ,
так и вблизи от него). В результате этого
К(3) является самым опасным
повреждением для устойчивости параллельной
работы энергосистемы и потребителей
электроэнергии.
Двухфазное короткое замыкание. На рис.1.5, а показано металлическое КЗ между фазами В и С ЛЭП. Под действием междуфазной ЭДС ЕВС (рис.1.5, а) возникают токи КЗ IВк и IСк.
Их значения определяются по формуле IК(2)=ЕВС/2ZФ, где 2ZФ – полное сопротивление прямой последовательности двух фаз (2ZФ=ZВ+ZС). Токи в поврежденных фазах равны по значению, но противоположны по фазе, а ток в неповрежденной фазе равен нулю (при неучете нагрузки):
Ток нулевой последовательности (НП) при К(2) отсутствует, так как сумма токов трех фаз IA+IB+IC= 0.
Векторная диаграмма в точке К. На
рис.1.5, б построены векторы фазных
ЭДС и ЭДС между поврежденными фазами
ЕВС. Вектор тока КЗ
IкВ
отстает от создающей его ЭДС
Напряжение неповрежденной фазы А одинаково в любой точке сети и равно фазной ЭДС: UA=EA. Поскольку междуфазное напряжение при металлическом КЗ в точке КЗ UBCк=UBк – UCк = 0, то:
(1.3)
т.е. фазные напряжения поврежденных фаз в месте КЗ равны по модулю и совпадают по фазе.
Поскольку фазные напряжения при двухфазном КЗ не содержат составляющих НП, в любой точке сети должно удовлетворяться условие:
(1.3а)
Учитывая, что в месте КЗ UBK=UCK и UAK=EA, находим
(1.3б)
Следовательно, в месте КЗ напряжение каждой поврежденной фазы равно половине напряжения неповрежденной фазы и противоположно ему по знаку. На диаграмме вектор UAK совпадает с вектором EA, а векторы UBK и UCK – равны друг другу и противоположны по фазе вектору EA.
Векторная диаграмма в точке P приведена на рис.1.5, в. Векторы токов остаются без изменения. Напряжения фаз В и С в точке Р равны:
(1.4)
Чем дальше точка Р отстоит от места КЗ, тем больше напряжение: UBСР=UВР–UСР. Напряжение неповрежденной фазы UAP=EA. Вектор тока IBP отстает от междуфазного напряжения UBCP на угол φк=arctg(XЛ/RЛ).
Двухфазные КЗ характеризуются двумя особенностями:
1) векторы токов и напряжений образуют несимметричную, но уравновешенную систему, что говорит об отсутствии составляющих НП. Наличие несимметрии указывает, что токи и напряжения имеют составляющие обратной последовательности (ОП) наряду с прямой;
2) фазные напряжения даже в месте КЗ существенно больше нуля, только одно междуфазное напряжение снижается до нуля, а значение двух других равно 1,5UФ. Поэтому двухфазное КЗ менее опасно для устойчивости ЭЭС и потребителей электроэнергии.
Однофазное короткое замыкание (К(1)). Замыкание на землю одной фазы вызывает появление тока КЗ только в электрических сетях 110 кВ и выше, работающих с глухозаземленными нейтралями трансформаторов. Характер токов и напряжений, появляющихся при этом виде повреждения на фазе А, поясняет рис.1.6, а.
Ток КЗ Iак возникающий под действием ЭДС ЕА, проходит по поврежденной фазе от источника питания G и возвращается обратно по земле через заземленные нейтрали N трансформаторов:
(1.5)
Рис.1.6. Однофазное КЗ:
а
- схема;
векторные диаграммы токов и напряжений
в месте КЗ (б)
и в месте установки реле Р
(в),
токов (г)
и напряжений (д)
симметричных составляющих в месте КЗ
Индуктивные и активные сопротивления
в этом выражении соответствуют петле
фаза-земля и отличаются от значений
сопротивлений фаз при междуфазных КЗ.
Вектор IАк
отстает от вектора ЭДС ЕА
на угол
В неповрежденных фазах токи отсутствуют.
Напряжение поврежденной фазы А в точке К UАК=0. Напряжения неповрежденных фаз1 В и С равны ЭДС этих фаз:
(1.6)
Векторная диаграмма для места повреждения изображена на рис.1.6, б. Междуфазные напряжения UABK= UBK; UBCK= UBK – UCK; UCAK= UCK.
Геометрические суммы фазных токов и напряжений равны:
(1.6a)
Отсюда ясно, что фазные токи и напряжения содержат составляющие НП:
Вектор I0K совпадает по фазе с IAK вектор U0K противоположен по фазе EA и равен 1/3 нормального (до КЗ) значения напряжения поврежденной фазы А:
U0K= – 1/3EA= –1/3UAN. Ток I0K опережает напряжение U0K на 90°.
Векторная диаграмма в точке Р при К(1) приведена на рис.1.6, в. Ток фазы А остается неизменным. Напряжение поврежденной фазы
(1.7)
Вектор UAP опережает IАк на угол φк=arctg(Xл(1)/Rл(1)).
Напряжения неповрежденных фаз В и С не изменяются:UBP=EB; UCP=EC. Междуфазные напряжения UABP UACP и увеличиваются. Векторы НП I0P и U0P равны:
Как следует из диаграммы, UoP<UoK по модулю и смещается по фазе из-за наличия активного сопротивления RKP(1) (фаза-земля). Отметим некоторые особенности векторных диаграмм (рис.1.6, б и в):
1) токи и фазные напряжения образуют несимметричную и неуравновешенную систему векторов, что говорит о наличии кроме прямой составляющих ОП и НП;
2) междуфазные напряжения в точке К больше нуля, площадь треугольника, образованного этими напряжениями, отличается от нуля. Однофазное КЗ является наименее опасным видом повреждения с точки зрения устойчивости ЭЭС и работы потребителей.
Двухфазное короткое замыкание на землю (К(1,1)). Этот вид КЗ также может возникать только в сети с глухозаземленной нейтралью (см. рис.1.2, г). Векторная диаграмма КЗ на землю двух фаз приведена на рис.1.7 для точек К и Р.
Под действием ЭДС ЕВ и ЕС в поврежденных фазах В и С
протекают токи IВк и IСк замыкающиеся через землю:
(1.8)
В неповрежденной фазе ток отсутствует:
(1.9)
Сумма токов всех трех фаз с учетом (1.8) и (1.9) не равна нулю: IАк+IВк+IСк=IК(3)=3I0, полные токи содержат составляющую НП.
В месте КЗ напряжения поврежденных фаз В и С, замкнутых на землю, равны нулю: UBK=UCK=0. Напряжение между поврежденными фазами также равно нулю: UBCK=0. Напряжение неповрежденной фазы UAK остается нормальным (если пренебречь индукцией от токов IВк и IСк). В точке К треугольник междуфазных напряжений (рис.1.7, в) превращается в линию, а междуфазные напряжения между поврежденными и неповрежденными фазами UAB и UCA снижаются до фазного напряжения UAK.. Диаграмма токов и напряжений для точки Р построена на рис.1.7, б.
В связи с увеличением напряжений UBР и UСР увеличиваются и междуфазные напряжения, растет площадь треугольника междуфазных напряжений и уменьшается напряжение НП:
1
В действительности ток IАк
проходящий по поврежденной фазе, наводит
в фазах В
и С
дополнительную ЭДС взаимоиндукции ΔЕ,
которая отстает по фазе от тока IАк
на 90°. С учетом взаимоиндукции U'BK=EB+ΔE
и U'СK=EС+ΔE
ЭДС взаимоиндукции увеличивает напряжения
неповрежденных фаз и уменьшает угол
сдвига фаз между
ними (0 < 120°).
Для упрощения диаграммы ΔЕ
не учитывается.
Р
ис.1.7.
Двухфазное КЗ на землю:
а — схема; векторные диаграммы токов и напряжений в месте КЗ и в месте установки реле Р (б); напряжения нулевой последовательности и фазных напряжений в месте КЗ (в) и в точке Р (г)
Векторные диаграммы при двухфазных КЗ на землю имеют следующие особенности:
1) токи и напряжения несимметричны и неуравновешены, что обусловливает появление кроме прямой составляющих НП и ОП;
2) из-за резкого снижения напряжений в месте КЗ этот вид повреждения после К(3) является наиболее тяжелым для устойчивости энергосистемы и потребителей электроэнергии.
Д
войное
замыкание на землю (К(1)).
Подобное КЗ возникает в сети с изолированной
или заземленной через дугогасящий
реактор нейтралью. Под двойным замыканием
подразумевается замыкание на землю
двух фаз в разных точках сети (К1 и
К2 на рис.1.8). Под действием
разности ЭДС поврежденных фаз ЕВЕС
в фазах В и С возникают токи К3
IВк и
IСк,
замыкающиеся через землю в точках К1
и К2. В этих точках и в поврежденных
фазах токи КЗ равны по значению и
противоположны по фазе: IВк=
IСк;
неповрежденной фазе А ток IАК
= 0.
Векторная диаграмма токов на участке между источником питания и ближайшим местом повреждения (точкой К1) будет такой же, как при двухфазном КЗ без земли (см. § 1.3, рис.1.5). Сумма токов фаз на этом участке равна нулю (IАк+IВк=IСк=0), следовательно, в токах фаз отсутствуют составляющие НП.
На участке ЛЭП между точками замыкания
на землю К1 и К2 в условиях
одностороннего питания ток КЗ протекает
только по одной фазе (фаза В на
рис.1.8), т.е. так же, как и при однофазном
КЗ (см. § 1.3). Векторная диаграмма полных
токов и напряжений на этом участке
аналогична диаграмме при однофазных
КЗ (см. рис.1.6, б), а в токах и напряжениях
на участке К1, К2 появляются составляющие
НП. С учетом того, что на этом участке
.
Поскольку точки К1 и К2 имеют
потенциал земли, то в точке К2
,
а в точке К1
.