
- •Министерство образования и науки республики казахстан Атырауский институт нефти и газа
- •1. Глоссарий
- •2 Конспект лекционных занятий модуль 1. Введение Лекция 1. Технологическое оформление производств основного органического и нефтехимического синтеза
- •Особенности технологии основного органического и нефтехимического синтеза
- •Структура производства и отрасли
- •Вопросы для самопроверки:
- •Модуль 2. Основные направления и научные основы подготовки нефтей к переработке
- •Элементарный и фракционный состав нефти
- •Групповой химический состав нефтей
- •Основные физические свойства нефтей и нефтяных фракций
- •Вопросы для самопроверки:
- •Обессоливание и обезвоживание нефтей. Технологические схемы и режимы электрообессоливания и обезвоживания нефтей.
- •Вопросы для самопроверки:
- •Модуль 3. Основные методы разделения и первичной переработки нефтяного углеводородного сырья
- •Типы промышленных установок
- •Блок атмосферной перегонки нефти установки элоу-авт-6
- •Блок вакуумной перегонки мазута установки элоу-авт-6
- •Вопросы для самопроверки:
- •Модуль 4. Пластические массы на основе полимеров
- •Получение полиэтилена высокой плотности в растворе при низком давлении
- •Свойства и применение полиэтилена
- •Вопросы для самопроверки:
- •Окончательная обработка полиолефинов
- •Свойства и применение полипропилена
- •Вопросы для самопроверки:
- •Получение полиизобутилена
- •Свойства и применение полиизобутилена
- •Вопросы для самопроверки:
- •Производство полистирола и ударопрочного полистирола в массе
- •Производство полистирола и сополимеров стирола в суспензии
- •Производство полистирола для вспенивания блочно-суспензионным методом
- •Производство ударопрочного полистирола блочно-суспензионным методом
- •Производство полистирола в эмульсии
- •Производство абс-сополимеров в эмульсии
- •Свойства и применение полистирола
- •Свойства и применение сополимеров стирола
- •Вопросы для самопроверки:
- •Получение пенополистирола прессовым и беспрессовым методом
- •Свойства и применение пенополистирола
- •Вопросы для самопроверки:
- •Проивзодство поливинилхлорида полимеризацией винилхлорида в массе
- •Производство поливинилхлорида в суспензии
- •Производство поливинилхлорида в эмульсии
- •Производство жесткого и мелкого поливинилхлорида. Винипласт и пластикат
- •Производство пенополивинилхлорида
- •Свойства и применение поливинилхлорида и пенополивинилхлорида
- •Вопросы для самопроверки:
- •Производство политетрафторэтилена (фтороплатста-4) в суспензии и в эмульсии. Полимеризация тетрафторэтилена
- •Переработка и применение политетрафторэтилена
- •Вопросы для самопроверки:
- •Полимеризация акриловых кислот. Производство листового полиметилметакрилата в массе
- •Производство полиметилметакрилата в суспензии
- •Свойства и применение полиметилметакрилатаи сополимеров метилметакрилата
- •Вопросы для самопроверки:
- •Лекция №13. Технология производства, свойства и применение фенолоальдегидных полимеров
- •Особенности взаимодействия фенолов с альдегидами. Строение и отверждение фенолоальдегидных смол. Механизм образования олигомеров
- •Производство новолачных олигомеров
- •Производство резольных олигомеров периодическим методом
- •Производство пресс-порошков непрерывным методом
- •Свойства и применение фенолоальдегидных смол
- •Свойства и применение пресс-порошков
- •Вопросы для самопроверки:
- •Лекция №14. Технология производства, свойства и применение эпоксидных полимеров
- •Особенности получения и отверждения эпоксидных смол
- •Производство эпоксидиановых смол
- •Производство, свойства и применение циклоалифатических эпоксидных смол
- •Свойства и применение эпоксидиановых смол
- •Вопросы для самопроверки:
- •Лекция 15. Основные процессы переработки: литье и прессование
- •Формование
- •Прессование
- •Прямое (компрессионное) прессование
- •Литье под давлением
- •Цикл литья под давлением
- •Влияние температуры материального цилиндра
- •Влияние давления впрыска
- •Основные процессы переработки: экструзия и каландрование
- •Каландрование
- •Определение фракционного состава в аппарате арн-2 (гост 11011-85)
- •Лабораторная работа №2 Тема: Вакуумная перегонка нефти на аппарате арн-2
- •Определение фракционного состава по методу ГрозНии
- •Вопросы для самопроверки:
- •Лаборторная работа № 3 Тема: Формование волокон и пленок
- •Лабораторная работа 4 Тема: Переработка термопластов литьем под давлением
- •Лабораторная работа 5 Тема: Экструзия термопластов
- •Лабораторная работа 6 Тема: Резина, стойкая к действию минеральных масел
- •Лаборторная работа 7 Тема: Феноло-формальдегидная смола новолачного типа
- •4 Самостоятельная работа студентов с преподавателем (срсп)
- •5 Самостоятельная работа студентов (срс)
- •6 Экзаменационные вопросы
- •Технические средства обучения
- •8 Список рекомендуемой литературы Основная литература
- •Дополнительная:
Основные физические свойства нефтей и нефтяных фракций
Товарные качества нефтей и нефтяных фракций характеризуются помимо фракционного и химического составов также многими показателями их физико-химических свойств. Некоторые из них входят в ГОСТы на товарные нефтепродукты, косвенно или непосредственно характеризуя их эксплуатационные свойства. Другие показатели используются для лабораторного контроля и автоматического регулирования технологических процессов нефтепереработки. Значения показателей физико-химических свойств нефтей и их фракций необходимы для расчета нефтезаводской аппаратуры.
Плотность. Это одна из важнейших и широко употребляемых показателей качества нефтей и нефтепродуктов. На первых этапах развития нефтяной промышленности она была почти единственным показателем качества сырых нефтей, в частности, содержания керосина. Плотность определяется как масса единицы объема жидкости при определенной температуре (кг/м3, г/см3 или г/мл). На практике чаще используют относительную плотность - безразмерную величину, численно равную отношению истинных плотностей нефтепродукта и дистиллированной воды, взятых при определенных температурах. В качестве стандартных температур для воды и нефтепродукта приняты в США и Англии - 15,6°С (60°F*), в других странах, в т.ч. у нас - 4°С и 20°С (p²º4).
*°F - градусы по шкале Фаренгейта, в которой температуры таяния льда и кипения воды приняты соответственно за 32 и 212 единиц; t °С = 5/9(t °F —32).
Определение
плотности нефтяного сырья можно проводить
при любой температуре (
а
затем вычислить значение
по формуле Д.И. Менделеева:
где а - средний температурный коэффициент расширения на один градус (его значения приводятся в справочной литературе, например: расчеты основных процессов и аппаратов нефтепереработки: Справочник Под ред. Е.Н. Судакова. М.: Химия, 1979.
Формула Д.И. Менделеева применима в сравнительно узком интервале температур от 0 до 50°С для нефтепродуктов, содержа¬щих относительно небольшие количества твердых парафинов и аро-матических углеводородов.
Плотность большинства нефтей в среднем колеблется от 0,81 до 0,90, хотя встречаются нефти легче или тяжелее указанных пределов. Плотности последовательных фракций нефти плавно увеличиваются. Плотность идентичных узких нефтяных фракций зависит от химического их состава и возрастает в зависимости от преобладания классов углеводородов в следующем порядке: алканы цикланы арены.
В некоторые формулы, применяемые в инженерных расчетах процессов нефтепереработки, входит значение плотности р15/15. Пе-ресчитать ее можно по формуле:
Для расчетов с высокой точностью (погрешностью менее 1%) термической зависимости плотности жидкофазных углеводородов и нефтяных фракций в широком диапазоне температур предложена следующая формула:
где т = т/293,16;
Т-в К; а0=-3,424; а,=0,127; а2=-0,0681; а3=7,8042; а4=-4,964
Средняя температура кипения нефтяной фракции. Любая нефтяная фракция, как и нефть, представляет собой сложную смесь углеводородов, выкипающих в некотором температурном интервале. В инженерных расчетах используется понятие средней температуры кипения нефтяной фракции. Существует несколько ее модификаций, но наиболее употребительной
является средняя молярная температура t срм, которая рассчитывается по формуле:
где i - число компонентов (узких фракций) от 1 до n;
хi - мольная доля i-гo компонента;
Ti - среднеарифметическая температура кипения узкой фракции, в °С.
Характеризующий фактор. Это условный параметр, представляющий собой функцию плот-ности и средней молярной температуры кипения y ефтепродукта (Тсрм, °К), отражающий его химическую природу:
Средние значения К следующие:
парафинистые нефтепродукты 12,5-13,0
нафтеноароматические 10-11
ароматизированные 10
продукты крекинга 10-11
Формула расчета характеризующего фактора (называемого также как фактор парафинистости Ватсона) применяется обычно для последующего расчета молекулярной массы узких нефтяных фракций.
Молярная масса. Представляет собой массу усредненного моля нефтепродукта (кг/кмоль), определяемую экспериментально или расчетом по эмпирическим формулам.
С повышением температуры кипения нефтяных фракций молярная масса (М) растет. Эта закономерность лежит в основе формулы Б.П. Воинова:
M = 60 + 0,3tср. м. +0,001t2
Более точные результаты дает формула Б.П.Воинова - А.С.Эйгенсона, выведенная с учетом характеризующего фактора:
М = 7K - 21,5 + (0,76 - 0,04K)tcp + (0,0003K - 0,00245)t2cp.м
Зависимость между молярной массой и относительной плотностью выражает формула Крэга:
M
= 44,p
/ (1.03 – p
)
Молярная масса смеси нефтяных фракций рассчитывается по правилу аддитивности исходя из известного их состава и молярных масс:
М=
Мi,хi
или М =
1/
хi/Мi,
где х
и
xi;
- соответственно мольная и массовая
доля нефтяных фракций.
Формула Б.М.Воинова применима только для нормальных алканов с числом углеродных атомов от 4 до 15. Формула Б.М.Воинова -А.С.Эйгенсона более универсальна, поскольку содержит характе¬ризующий химическую природу фактор К, однако обладает недо¬статочно высокой адекватностью.
Для расчетов М любых углеводородов и нефтяных фракций (с погрешностью менее 1,5% отн.) автором предложена следующая формула:
где t s =Tкип / 100; α0 =3,1612; α1 =1,3014; α2= - 0,0287; α3= 2,3986
Давление насыщенных паров (ДНП). ДНП - это давление, развиваемое парами, находящимися над жидкостью в условиях равновесия при определенной температуре. Давление насыщенных паров индивидуальных химических веществ зависит только от температуры. Для нефти нефтяных фракций оно зависит не только от температуры, но и от температуры их кипения и плотности. Для узких фракций нефти можно с известной степенью приближения считать pT=f(T, Ткип). На этом базируются различные формулы (Антуана, Кокса, Максвелла, Билла, ЮОП и др.), из которых чаще других используется формула Ашворта:
lg(pT- 3158) = 7,6715 - 2,68f(T)/f(T0), (Па), где
f(T) =[1250/(√Т2 + 108000 - 307,6)] - 1,
f(T0) - аналогичная функция, только при Т0 - средней температуре кипения фракции при атмосферном давлении,°С.
ДНП - является одним из фундаментальных физических свойств химических веществ и более информативно характеризует физикохимическую сущность фазовых переходов и энергетику межмолекулярного взаимодействия в них. ДНП широко используется в химической технологии для инженерных расчетов массотеплообменных процессов, определяет также эксплуатационные свойства нефтепродуктов.
Предложенные ранее номограммы и формулы для расчета ДНП не обладают достаточной универсальностью и адекватностью, поскольку в них не полностью учитывается влияние химической природы углеводородов посредством включения в формулы не только температуры кипения, но и плотности жидкостей.
Автором предложена следующая универсальная формула для термической зависимости ДНП углеводородов и узких нефтяных фракций (с погрешностью менее 1% отн.):
Температура
кипения при нестандартных давлениях.В
химической технологии информацией о
температуре кипения химических веществ
при нестандартных давлениях П (Т
) пользуется при расчетах технологических
процессов, осуществляемых при вакууме
или давлениях выше атмосферного, и
обычно довольствуются табулированными
экспериментальными данными или же
номограммами. Поскольку Т
определяется из условия равенства ДНП
жидкости Рт внешнему давлению П, то
барическую зависимость тем-пературы
кипения химических веществ следует
рассматривать как обратную функцию
термической зависимости ДНП при условии
РТ=П.
Критические свойства и приведенные параметры. Критическая температура (Ткр), названная по предложению Д.И. Менделеева абсолютной температурой кипения - температура, при которой исчезает различие между жидко- и газообразным состоянием вещества. При температурах свыше Ткр вещество переходит в сверхкритическое состояние без кипения и парообразования (фазовый переход 2-го рода), при котором теплота испарения, поверхностное натяжение и энергии межмолекулярного взаимодействия равны нулю. При сверхкритическом состоянии возникают характерные флуктуации плотности (расслоение по высоте сосуда), что приводит к рассеянию света, затуханию звука и другим аномальным явлениям, таким как сверхпроводимость и сверхтекучесть гелия. Вещество в сверхкритическом состоянии можно представить как совокупность изолированных друг от друга молекул (как молекулярный «песок»). Для веществ, находящихся в сверхкритическом состоянии, не применимы закономерности абсорбции, адсорбции, экстракции и ректификации. Их в смесях с «докритическими» жидкостями можно разделить лишь гравитационным отстоем. Критическое давление (Ркр) - давление насыщенных паров хи¬мических веществ при критической температуре. Критический объем (Vкp) - удельный объем, занимаемый веществом при критических температуре и давлении.
Для расчетов критических свойств углеводородов и нефтяных фракций Фкр (Ткр, Ркр) автором предложена универсальная формула:
со следующими значениями коэффициентов:
Таблица 6
Значения коэффициентов
фкр |
φ |
α0 |
α1 |
α2 |
α3 |
α4 |
Vтр ºК |
243,9287 |
-0,1666 |
6,5-103 |
-4,6-10° |
1,8263 |
-0,9851 |
Ркр(бар) |
713,5239 |
-5,5857 |
-2,0536 |
-0,095 |
8,8093 |
-4,370 |
Vкр (см3/моль) |
65,7138 |
5,4758 |
-3,9938 |
-0,578 |
-5,9245 |
2,8085 |
Zкр |
0,7199 |
-0,6027 |
-2,0109 |
-0,0461 |
1,2654 |
-0,6977 |
Приведенные свойств рассчитываются как
Они связаны соотношением
Для углеводородов и нефтяных фракций
Фугитивность. Характеризует степень отклонения свойств реальных газов и паров от рассчитываемых по уравнениям состояния идеального газа. Фугитивность (f) измеряется в тех же единицах, что и ДНП и заменяет его в уравнениях идеального состояния применительно к ре¬альным газам, парам и жидкостям:
f=ZP,
где Z - коэффициент фугитивности (сжимаемости). Для идеального газа z=l.
Установлено, что Z является функцией приведенных температуры и давления. При инженерных расчетах значения коэффициента фугитивности Z определяют по эмпирическим уравнениям или по специальным номограммам.
Вязкость и вязкостно-температурные свойства. Вязкость является одной из важнейших характеристик нефтей и нефтепродуктов. Она определяет подвижность нефтепродуктов в условиях эксплуатации двигателей, машин и механизмов, существенно влияет на расход энергии при транспортировании, фильтрации, перемешивании. Различают динамическую (ŋ), кинематическую (v) и условную (ВУ) вязкости.
В нефтепереработке наиболее широко пользуются кинематической вязкостью, численно равной отношению динамической вязкости
нефтепродукта к его плотности v = ŋ/р. Единицей измерения v является см2/с(стокс) или мм2/с(сантистокс).
Как и другие характеристики, вязкость нефти и нефтяных фракций зависит от их химического состава и определяется силами межмолекулярного взаимодействия. Чем выше температура кипения нефтяной фракции, тем больше ее вязкость. Наивысшей вязкостью обладают остатки от перегонки нефти и смолисто-асфальтеновые вещества. Среди классов углеводородов наименьшую вязкость имеют парафиновые, наибольшую - нафтеновые, а ароматические углеводороды занимают промежуточное положение. Возрастание числа циклов в молекулах цикланов и аренов, а также удлинение их боковых цепей приводят к повышению вязкости.
Вязкость сильно зависит от температуры, поэтому всегда указывается температура. В технических требованиях на нефтепродукты обычно нормируется вязкость при 50 и 100, реже 20°С.
Для расчетов вязкости при различных температурах предложено множество эмпирических формул. Наибольшее распространение получила формула Вальтера:
где А и В - постоянные величины.
Зависимость вязкости от температуры имеет важное значение особенно для смазочных масел с точки зрения обеспечения надежной смазки трущихся деталей в широком интервале температур эксплуатации машин и механизмов. Для оценки вязкостно-температурных свойств нефтяных масел предложены различные показатели, такие, как индекс вязкости (ИВ), отношение вязкостей v50/v100 и др. Индекс вязкости - условный показатель, представляющий собой сравнительную характеристику испытуемого масла и эталонных масел. Значение ИВ рассчитывается по специальным таблицам на основании значений v50 и v100 масел. Чем меньше меняется вязкость масла с изменением температуры, тем выше его ИВ. Установлено, что ИВ зависит от химического состава масла и структуры углеводородов. Наибольшим значением ИВ обладают парафиновые углеводороды, наименьшим - полициклические ароматические с короткими боковыми цепями.
Вязкость - не аддитивное свойство, поэтому вязкость смеси нефтяных
дистиллятов или масел определяется либо экспериментально, или по специальным номограммам, построенным по сложным эмпирическим уравнениям, например, по формуле Вальтер
где х1 и x2 - массовая доля компонентов смеси.
Тепловые свойства. При технологических расчетах аппаратов НПЗ приходится пользоваться такими значениями тепловых свойств нефтей и нефтепродуктов, как теплоемкость, энтальпия (теплосодержание), теплота
сгорания и т.д.
Теплоемкость - количество тепла, необходимое для нагревания единицы массы вещества на один градус. Различают истинную (Сист) и среднюю (С) теплоемкости, соответствующие либо бесконечно малому изменению или разности температур. В зависимости от способа выражения состава вещества различают массовую, мольную и объемную теплоемкости. Чаще применяют массовую теплоемкость, единица ее измерения в СИ - Джоуль на килограмм-Кельвин (Дж/кг К), допускаются также кратные единицы - кДж/кг К, МДж/кг К.
Различают также изобарную теплоемкость (при постоянном давлении
- Ср) и изохорную теплоемкость (при постоянном объеме - Cv).
Для расчета средней теплоемкости жидких нефтепродуктов предложены уравнение Фортча и Уитмена:
Ср = 1,444 + 0,000371(Тср - 273) (2, l - р )
уравнение Крэга:
Ср = (0,762 - 0,0034Tcp)/√ р
и другие.
Для определения средней теплоемкости паров и нефтяных фракций в интервале до 350°С можно пользоваться уравнением Бальке и Кей:
Ср = (4 - р )(1,8Т + 211)/1541.
Теплота испарения - количество теплоты, поглощаемое жидкостью при переходе ее в насыщенный пар. Теплота испарения нефтепродуктов меньше теплоты испарения воды. Значение теплоты испарения L для некоторых нефтепродуктов (в кДж/кг):
Бензин 293-314
Керосин 230-251
Масла 167-219.
Для определения теплоты испарения парафинистых низкокипящих нефтепродуктов можно использовать уравнение Крэга:
L = (354,1-0,3768Тср.м)/р
Энтальпия
(теплосодержание). Удельная энтальпия
жидких нефтепродуктов при температуре
t численно равна количеству тепла (в
кДж), необходимому для нагрева единицы
количества продукта от температуры 0°С
до заданной температуры. Энтальпия
паров (q
)
больше энтальпии жидкости (qT*) на величину
теплоты испарения и перегрева паров.
Приведем наиболее часто используемые
уравнения для расчета энтальпии жидких
и парообразных нефтепродуктов (в кДж/кг)
при атмосферном давлении:
уравнение Фортча и Уитмена:
q* = (0,001855Т2+0,4317Т-256,11)(2,1-р ),
уравнение Крэга:
q* =(0,0017Т2+0,762Т-334,25)√ р ,
уравнение Уэйра и Итона:
q =(129,58+0,134Т+0,00059Т2)(4- р )-308,99.
Теплота сгорания (теплотворная способность) – количество тепла (в Дж), выделяющееся при полном сгорании единицы массы (кг) топлива (нефти, нефтепродуктов) при нормальных условиях.
Различают высшую (QB) и низшую (QН) теплоты сгорания. QB отличается от Qн на величину теплоты полной конденсации водяных паров, образующихся из влаги топлива и при сгорании углеводородов.
Для расчета Qн используются следующие формулы (в кДж/кг):
Qн = 46423+3169 р -8792(р ) 2,
или формула Д.И. Менделеева:
Q„ = 339,lC+1030H-108,9(O-S)-16,75W,
где С, Н, О, S, W - содержание (в % масс.) в топливе углерода, водорода,
кислорода, серы и влаги.
Низкотемпературные свойства. Для характеристики низкотемпературных свойств нефтепродуктов введены следующие условные показатели: для нефти, дизельных и котельных топлив - температура помутнения; для карбюраторных и реактивных топлив, содержащих ароматические углеводороды, - температура начала кристаллизации. Метод их определения заключается в охлаждении образца нефтепродукта в стандартных условиях в стандартной аппаратуре. Температура появления
мути отмечается как температура помутнения. Причиной помутнения топлив является выпадение кристаллов льда и парафиновых углеводородов. Температурой застывания считается температура, при которой охлаждаемый продукт теряет подвижность. Потеря подвижности вызывается либо повышением вязкости нефтепродукта, либо образованием кристаллического каркаса из кристаллов парафина и церезина, внутри которого удерживаются загустевшие жидкие углеводороды. Чем больше содержание парафинов в нефтепродукте, тем выше температура его застывания.
За температуру начала кристаллизации принимают максимальную температуру, при которой в топливе невооруженным глазом обнаруживаются кристаллы ароматических углеводородов, прежде всего бензола, который затвердевает при 5,5°С. Эти кристаллы, хотя и не приводят к потере текучести топлив, тем не менее опасны для эксплуатации двигателей, поскольку забивают их топливные фильтры и нарушают подачу топлива. Поэтому по техническим условиям температура начала кристаллизации авиационных и реактивных топлив нормируется не менее минус 60°С.
Оптические свойства. В лабораторной практике и научных исследованиях для определения химического состава нефтепродуктов в дополнение к химическим методам анализа часто используют такие
оптические свойства, как цвет, коэффициент (показатель) преломления, оптическая активность, молекулярная рефракция и дисперсия. Эти показатели внесены в ГОСТы на некоторые нефтепродукты. Кроме того, по оптическим показателям можно судить о глубине очистки нефтепродуктов, о возрасте и происхождении нефти.
Углеводороды нефти бесцветны. Тот или иной цвет нефтям и нефтепродуктам придают содержащиеся в них смолисто-асфальтеновые вещества, некоторые продукты окисления. Обычно чем тяжелее нефть и нефтепродукты, тем больше содержится в них смолисто-асфальтеновых веществ и тем они темнее. В результате глубокой очистки нефтяных дистиллятов можно получить бесцветные нефтепродукты. Осветление нефти в природных условиях происходит при ее миграции в недрах земли через горные породы, в частности, через толщи глин.
Показатель преломления (nр) - важная константа, которая позволяет судить о групповом углеводородном составе нефти и нефтяных дистиллятов, а в сочетании с плотностью и молярной массой -рассчитать структурно-групповой состав нефтяных фракций.
Чем больше плотность нефтепродукта, тем выше его показатель преломления. Показатель преломления циклических соединений больше, чем алифатических. Циклоалканы занимают промежуточное положение между аренами и алканами. В гомологических рядах углеводородов
наблюдается линейная зависимость между плотностью и показателем преломления. Для фракций циклоалканов существует симбатная зависимость между температурой кипения или молярной массой и показателем преломления.
Кроме показателя преломления, весьма важными характеристиками являются некоторые его производные, например, удельная (R) и молярная (RM) рефракция:
где р - плотность нефтепродукта, измеренная при той же температуре, что и показатель преломления.
Удельная, особенно молярная, рефракция обладает аддитивностью и позволяет количественно определить групповой состав и структуру углеводородов нефтяных фракций.
Оптическая активность является также ценной характеристикой нефти и нефтепродуктов. Нефти в основном вращают плоскость поляризации вправо, однако встречаются и левовращающие нефти, что, возможно, обусловлено наличием в них продуктов распада исходных нефтематеринских веществ - терпенов и стеринов.
Классификация нефтей. На начальном этапе развития нефтяной промышленности основным показателем качества нефти была плотность. Нефти де¬лили на легкие (р,'55< 0,828), утяжеленные (р'55 = 0,828-0,884) и
тяжелые (р',5> 0,884). В легких нефтях содержится больше бензиновых и керосиновых фракций и сравнительно мало серы и смол. Из этих нефтей можно вырабатывать смазочные масла высокого качества. Тяжелые нефти, напротив, характеризуются высоким содержанием смолисто-асфальтеновых веществ, гетероатомных соединений и потому мало пригодны для производства масел и дают относительно малый выход топливных фракций.
Предложено множество научных классификаций нефтей (химическая, генетическая, технологическая и др.), но до сих пор нет единой международной их классификации.
Химическая классификация. Горным бюро США предложен вариант химической классификации, в основу которого положена связь между плотностью и углеводородным составом легкой и тяжелой частей нефти.
Классификация, отражающая только химический состав нефти, предложена сотрудниками Грозненского нефтяного научно-исследовательского института (ГрозНИИ). За основу этой классификации принято преимущественное содержание в нефти одного или нескольких классов углеводородов. Различают 6 типов нефтей: парафиновые, парафино-нафтеновые, нафтеновые, парафино-нафтено-ароматические, нафтено-ароматические и ароматические.
В парафиновых нефтях (типа узеньской, жетыбайской) все фракции содержат значительное количество алканов: бензиновые не менее 50%, а масляные - 20% и более. Количество асфальтенов и смол исключительно мало.
В парафино-нафтеновых нефтях и их фракциях преобладают алканы и циклоалканы, содержание аренов и смолисто-асфальтеновых веществ мало. К ним относится большинство нефтей Урало-Поволжья и Западной Сибири.
Для нафтеновых нефтей характерно высокое (до 60% и более) содержание циклоалканов во всех фракциях. Они содержат минимальное количество твердых парафинов, смол и асфальтенов. К нафтеновым относятся нефти, добываемые в Баку (балаханская и сураханская) и на Эмбе (доссорская и макатская) и др.
В парафино-нафтено-ароматических нефтях содержатся примерно в равных количествах углеводороды всех трех классов, твердых парафинов не более 1,5%. Количество смол и асфальтенов достигает 10%.
Нафтено-ароматические нефти характеризуются преобладающим содержанием цикланов и аренов, особенно в тяжелых фракциях. Алканы содержатся в небольшом количестве только в легких фракциях. В состав этих нефтей входит около 15 - 20% смол и асфальтенов. Ароматические нефти характеризуются преобладанием аренов во всех фракциях и высокой
плотностью. К ним относятся прорвинская в Казахстане и бугурусланская в Татарстане.
Технологическая классификация. Нефти подразделяют по следующим показателям на: 1) три класса (I-III) по содержанию серы в нефти
(малосернистые, сернистые и высокосернистые), а также в бензине (н.к. - 180 °С), в реактивном (120-240 °С) и дизельном топливе (240-350°С); 2) три типа по потенциальному содержанию фракций, перегоняющихся до 350 °С (Т1-Т3); 3) четыре группы по потенциальному содержанию базовых масел (М1-М4); 4) четыре подгруппы по качеству базовых масел, оцениваемому индексом вязкости (И1-И4); 5) три вида по содержанию парафинов (П1-П3).
Из малопарафинистых нефтей вида П1 можно получать без де-парафинизации реактивные и зимние дизельные топлива, а также дистиллятные базовые масла. Из парафинистых нефтей П2 без де-парафинизации можно получить реактивное и лишь летнее дизельное топливо. Из высокопарафинистых нефтей П3, содержащих более 6% парафинов, даже летнее дизельное топливо можно получить только после депарафинизации.