Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПР 2013-14.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
410.11 Кб
Скачать

Практична робота №2 Розв’язування задач на енергетику хімічних процесів

Мета: розширення, поглиблення й деталізація наукових знань з хімічної термодинаміки шляхом розв’язування типових задач; продовжити розвиток системності мислення та формування основ матеріалістичного світогляду; досягти усвідомлення важливості знання основних положень і законів хімічної термодинаміки.

Прилади, обладнання та матеріали: калькулятор, таблиця «Стандартні ентальпії утворення деяких рчовин і йонів».

Вимоги щодо виконання практичної роботи

Ознайомитись з теоретичним матеріалом теми за рекомендованою літературою і даною інструкцією. Розв’язати задачі із завдань, що вказані викладачем та оформити звіт.

ТЕОРЕТИЧНІ ОСНОВИ

Хімічні процеси відбуваються з виділенням або поглинанням теплоти. Реакції, що відбуваються з виділенням теплоти, називають екзотермічними, а реакції, під час перебігу яких теплота поглинається, — ендотермічними. Так, реакції горіння, нейтралізації кислот лугами супроводжуються виділен ням значної кількості теплоти. Виділення теплоти під час взаємодії речовин свідчить про те, що вони мають певний запас енергії у прихованому вигляді. Енергія, яка прихована в речовинах і вивільняється під час хімічних і деяких фізичних процесів, називається внутрішньою енергією речовини.

Під час хімічних перетворень вивільнюється тільки частина енергії, яку мають речовини. Кількість виділеної або поглинутої теплоти називається тепловим ефектом реакції.

Щоб забезпечити можливість порівняння теплових ефектів різних реакцій, термохімічні розрахунки слід робити відносно одного моля сполуки за температури 25 °С (298,15 К) і тиску 101 кПа (1 атм). Теплові ефекти, визначені за таких умов, називають стандартними.

Кількість теплоти, що виділяється або поглинається під час утворення одного моля хімічної сполуки з простих речовин, називається теплотою (ентальпією) утворення даної сполуки. Так, теплота утворення води дорівнює – 285,8 кДж/моль; це означає, що в процесі утворення 18 г рідкої води з 2 г водню і 16 г кисню виділяється 285,8 кДж енергії у вигляді теплоти.

Визначені для речовин, що перебувають у стандартному стані, стандартні значення ентальпії та інших термодинамічних величин позначають відповідним символом з індексом зверху H0, а індексом знизу символа зазначають температуру, за якої вони визначені. Наприклад, зміна ентальпії H0298 визна­чена за температури 298 К, зміна ентальпії H01000 — за температури 1000 К.

Стандартна ентальпія утворення речовини H0f — це зміна ентальпії в процесі утворення даної речовини, що перебуває в стандартному стані з термодинамічно стабільних форм простих речовин, що також перебувають у стандартних станах. Стандартні теплоти утворення відомі для багатьох речовин, вони зведені в таблиці (табл.1).

Теплоти утворення простих речовин, стійких за стандартних умов (графіт, ромбічна сірка, кристалічний йод тощо), приймають такими, що дорівнюють нулю. В термохімічних рівняннях зазначають стан речовини: (к) — кристалічний, (р) — рідкий, (г) — газоподібний. Термохімічне рівняння реакції утворення води в рідкому стані можна записати так:

Н2 (г) + 1/2О2 (г) = Н2О (р), ∆H = –285,8 кДж.

В основі термохімічних розрахунків лежить закон, відкритий російським ученим Г.І. Гессом у 1840 р. Цей закон формулюється так: тепловий ефект реакції залежить тільки від початкового та кінцевого станів вихідних речовин та продуктів реакції і не залежить від проміжних стадій процесу.

Із закону Гесса, який є одним із висновків закону збереження енергії, випливає два важливих наслідки: 1) стандартний тепловий ефект реакції дорівнює сумі стандартних теплот утворення ∆Hf продуктів реакції з відні­манням суми стандартних теплот утворення вихідних речовин; 2) стандарт­ний тепловий ефект реакції дорівнює сумі стандартних теплот згоряння ∆HЗ вихідних речовин з відніманням суми стандартних теплот згоряння продуктів реакції.

Більшість процесів супроводжується передачею енергії та зміною упорядкованості частинок у системі. Частинки (молекули, атоми, йони) перебувають у безперервному хаотичному русі і безперервно змінюють свій стан — зміщуються, розсіюються, дифундують. Це означає, що система намагається перейти з менш невпорядкованого стану в більш невпорядкований стан. Кількісною мірою невпорядкованості системи є ентропія S.

Зміну ентропії в хімічних процесах обчислюють як різницю між ентропіями кінцевого і початкового станів системи. Отже, розрахунок ∆S аналогічний обчисленню ∆H за законом Гесса. Однак слід мати на увазі, що для простих тіл S ≠ 0 (на відміну від ∆H 0298).

Для того щоб значення ентропій можна було порівняти, їх прийнято відносити до певних умов. Найчастіше значення S подають за Р = 101 кПа. Ентропія за цих умов позначається літерою з індексом S0 і називається стандартною ентропією.

Потенціал, який є рушійною силою хімічних процесів, що відбуваються за Р, Т = соnst, називають енергією Гіббса G.

Умовою принципового здійснення процесу, тобто можливості самочинного перебігу реакції у прямому напрямку, є нерівність

G P,T < 0.

Іншими словами, за умови сталості температури і тиску реакції відбуваються самочинно у бік зменшення енергії Гіббса.

Нерівність ∆G P,T > 0 означає принципову неможливість перебігу процесу.

Енергія Гіббса зв'язана з ентальпією, ентропією і температурою співвідношенням:

G = HТS.

Зміна енергії Гіббса під час перебігу реакції за сталих тиску і температури дорівнює

G = ∆HТ∆S.

тобто зміна енергії Гіббса ∆G відображає сумарний ефект двох протилежних тенденцій у процесах, що відбуваються за сталих температури і тиску.