
Вопрос №1. Методы измерения.
Для точных измерений величин в метрологии разработаны приемы использования принципов и средств измерений, применение которых позволяет исключить из результатов измерений ряд систематических погрешностей и тем самым освобождает экспериментатора от необходимости определять многочисленные поправки для их компенсации, а в некоторых случаях вообще является предпосылкой получения сколько-нибудь достоверных результатов. Многие из этих приемов используют при измерении только определенных величин, однако существуют и некоторые общие приемы, названные методами измерения.
Наиболее просто реализуется метод непосредственной оценки, заключающийся в определении величины непосредственно по отсчетному устройству измерительного прибора прямого действия, например взвешивание на циферблатных весах, определение размера детали с помощью микрометра или измерение давления пружинным манометром.
Измерения с помощью этого метода проводятся очень быстро, просто и не требуют высокой квалификации оператора, поскольку не нужно создавать специальные измерительные установки и выполнять какие-либо сложные вычисления. Однако точность измерений чаще всего оказывается невысокой из-за погрешностей, связанных с необходимостью градуировки шкал приборов и воздействием влияющих величин (непостоянство температуры, нестабильность источников питания и пр.).
При проведении наиболее точных измерений предпочтение отдается различным модификациям метода сравнения с мерой, при котором измеряемую величину находят сравнением с величиной, воспроизводимой мерой. Результат измерения либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры.
Метод сравнения с мерой, заключающийся в том, что измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на измерительный прибор сравнения, с помощью которого устанавливается соотношение между ними, называется методом противопоставления. Примером этого метода является взвешивание груза на равноплечих весах, когда измеряемая масса определяется как сумма массы гирь, ее уравновешивающих. Применение метода противопоставления позволяет значительно уменьшить воздействие на результаты измерений влияющих величин, поскольку они более или менее одинаково искажают сигналы измерительной информации как в цепи преобразования измеряемой величины, так и в цепи преобразования величины, воспроизводимой мерой. Отсчетное устройство прибора сравнения реагирует на разность сигналов, вследствие чего эти искажения в некоторой степени компенсируют друг друга.
Разновидностью метода сравнения с мерой является также нулевой метод измерения, который состоит в том, что подбором размера воспроизводимой мерой величины или путем ее принудительного изменения эффект воздействия сравниваемых величин на прибор сравнения доводят до нуля. В этом случае компенсация воздействий влияющих величин оказывается более полной, а значение измеряемой величины принимается равным значению меры.
При дифференциальном методе измерения на измерительный прибор (не обязательно прибор сравнения) подается непосредственно разность измеряемой величины и величины, воспроизводимой мерой. Этот метод может быть использован, конечно, только в тех случаях, когда просто и точно реализуется операция вычитания величин (длины, перемещения, электрические напряжения). Дифференциальный метод неприменим при измерении таких величин, как температура или твердость тел.
К разновидностям метода сравнения с мерой относится и метод замещения, широко применяемый в практике точных метрологических исследований. Сущность метода в том, что измеряемая величина замещается в измерительной установке некоторой известной величиной, воспроизводимой мерой. Замещение может быть полным или неполным, в зависимости от чего говорят о методе полного или неполного замещения. При полном замещении показания не изменяются и результат измерения принимается равным значению меры. При неполном замещении для получения значения измеряемой величины к значению меры следует прибавить величину, на которую изменилось показание прибора.
Преимущество метода замещения - в последовательном во времени сравнении измеряемой величины и величины, воспроизводимой мерой. Благодаря тому, что обе эти величины включаются одна за другой в одну и ту же часть измерительной цепи прибора, точностные возможности измерений значительно повышаются по сравнению с измерениями, проводящимися с помощью других разновидностей метода сравнения, где несимметрия цепей, в которые включаются сравниваемые величины, приводит к возникновению систематических погрешностей. Способ замещения применяется при электрических измерениях с помощью мостов переменного тока, условие равновесия которых определяется не только значениями величин, воспроизводимых элементами плеч моста, но также и влиянием паразитных токов, емкостей, индуктивностей и рядом других факторов. Эти причины вызывают появление погрешностей, которые могут быть исключены, если проводить измерения методом замещения. Для этого вначале мост уравновешивается с включенной в его цепь измеряемой величиной, которая затем замещается известной величиной, и мост уравновешивается вновь. Если при этом никаких изменений ни в мосте, ни во внешних условиях не происходит, то указанные выше погрешности исключаются почти полностью.
Одним из общих методов измерений является метод совпадений, представляющий собой разновидность метода сравнения с мерой. При проведении измерений методом совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов.
По принципу метода совпадений построен нониус, входящий в состав ряда измерительных приборов. Так, например, шкала нониуса штангенциркуля имеет десять делений через 0.9 мм. Когда нулевая отметка шкалы нониуса оказывается между отметками основной шкалы штангенциркуля, это означает, что к целому числу миллиметров необходимо добавить число десятых долей миллиметра, равное порядковому номеру совпадающей отметки нониуса.
В рамках перечисленных выше методов измерений в метрологической практике и в общем приборостроении часто применяются специальные приемы для исключения самих источников систематических погрешностей или их компенсации. Рассмотрим наиболее употребительные из этих приемов.
Параметрическая стабилизация очень широко применяется при ответственных измерениях. Этот прием используют для поддержания в заданных пределах температуры и влажности окружающей среды, напряжения питания и других. Наиболее распространены такие способы параметрической стабилизации, как термостатирование приборов, защита от воздействия вибраций, использование эффективных стабилизаторов в цепях электропитания приборов, экранирование приборов для защиты их от воздействия посторонних электрических, магнитных, радиационных и других полей. Применение этих способов иногда позволяет избежать введения в результаты измерения поправок.
Параметрическая стабилизация очень широко применяется при ответственных измерениях. Этот прием используют для поддержания в заданных пределах температуры и влажности окружающей среды, напряжения питания и других. Наиболее распространены такие способы параметрической стабилизации, как термостатирование приборов, защита от воздействия вибраций, использование эффективных стабилизаторов в цепях электропитания приборов, экранирование приборов для защиты их от воздействия посторонних электрических, магнитных, радиационных и других полей. Применение этих способов иногда позволяет избежать введения в результаты измерения поправок.
Способ компенсации постоянных и периодических погрешностей по знаку. При реализации этого способа процесс измерения строится таким образом, что постоянная систематическая погрешность входит в результат измерения один раз с одним знаком, а другой раз - с другим. Тогда среднее из двух полученных результатов оказывается свободным от постоянной погрешности.
Способ вспомогательных измерений применяется в тех случаях, когда воздействие влияющих величин на результаты измерений вызывает большие погрешности измерений. Тогда идут на заведомое усложнение схемы измерительной установки, включая в нее элементы, воспринимающие значение влияющих величин, автоматически вычисляющие соответствующие поправки и вносящие их в полезные сигналы, которые поступают на отсчетные или регулирующие устройства.
Способ вспомогательных измерений в большой степени относится к инструментальным методам борьбы с систематическими погрешностями, поэтому в рамках настоящего курса не рассматривается.
Вообще следует заметить, что многие из приведенных методов и приемов исключения систематических погрешностей в настоящее время все в большей степени реализуются схемами самих измерительных средств. В результате разработка методологии измерений приобретает все большее значение непосредственно для проектирования измерительной аппаратуры.
Вопрс№2.
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения
Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99[1] термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[1]. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
В 2004 году на международном уровне был принят новый документ[2], диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределённость измерений»[источник не указан 1346 дней], однако ГОСТ Р 50.2.038-2004[3] допускает использовать термин погрешность для документов, использующихся в России.
Вопрос №3.
Классификация средств измерений
Средства измерения принято классифицировать по виду, принципу действия и метрологическому назначению.
Различают следующие виды средств измерений: меры, измерительные устройства, которые подразделяются на измерительные приборы и измерительные преобразователи; измерительные установки и измерительные системы.
Мера - это средство измерений, предназначенное для воспроизведения физической величины заданного размера.
Измерительный прибор - средство измерения, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.
Измерительный преобразователь - средство измерения, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.
Измерительная установка - совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем и расположенная на одном месте.
Измерительная система - совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических сигналах управления.
Все многообразие измерительных приборов, используемых для линейных измерений в машиностроении, классифицируют по назначению, конструктивному устройству и по степени автоматизации.
По назначению измерительные приборы разделяют на универсальные, специальные и для контроля.
По конструктивному устройству измерительные приборы делят на механические, оптические, электрические и пневматические и др. По степени автоматизации различают измерительные приборы ручного действия, механизированные, полуавтоматические и автоматические.
Универсальные измерительные приборы применяют в контрольно-измерительных лабораториях всех типов производств, а также в цехах единичных и мелкосерийных производств.
Универсальные измерительные приборы подразделяются:
на механические: - простейшие инструменты - проверочные измерительные линейки, щупы, образцы шероховатости поверхности; - Штангенинструменты - штангенциркуль, штангенглубиномер, штан-генрейсмас, штангензубомер; - микрометрические инструменты - Микрометр, микрометрический нутромер, микрометрический глубиномер; - приборы с зубчатой передачей - индикаторы часового типа; Рычажно-механические - миниметры, рычажные скобы;
оптические: - вертикальные и горизонтальные оптиметры, малый и большой инструментальные микроскопы, универсальный микроскоп, концевая машина, проекторы, интерференционные приборы;
пневматические: длинномеры (ротаметры);
электрические: электроконтактные измерительные головки, индуктивные приборы, профилографы, профилометры, кругломеры.
Специальные измерительные приборы предназначены для измерения одного или нескольких параметров деталей определенного типа; например приборы для измерения (контроля) параметров коленчатого вала, распределительного вала, параметров зубчатых колес, диаметров глубоких отверстий.
Приборы для контроля геометрических параметров по назначению делят на приборы для приемочного (пассивного) контроля (калибры), для активного контроля в процессе изготовления деталей и приборы для статистического анализа и контроля.
Вопрос №4.
В общем случае состояние (режим работы) измерительного устройства, при котором значения входного X и выходного Y сигналов не изменяются, называют статическим(стационарным или равновесным).
Статической характеристикой измерительного устройстваназывают функциональную зависимость выходного сигнала от входного в статическом режиме работы указанного устройства. Статическая характеристика описывается в общем случае некоторым нелинейным уравнением (уравнением преобразования):
Y = f(X) . |
(2.1) |
Для измерительных преобразователей и измерительных приборов с неименованной шкалой или со шкалой, отградуированной в единицах, отличных от единиц измеряемой величины, статическую характеристику принято называть функцией преобразования. Для измерительных приборов иногда статическую характеристику называютхарактеристикой шкалы.
Определение статической характеристики связано с выполнением градуировки, поэтому для всех средств измерений используют понятие градуировочной характеристики, под которым понимают зависимость между значениями величин на выходе и входе средства измерений, составленную в виде таблицы, графика или формулы.
градуировочная характеристика
Английское название: calibration function
Функциональная зависимость аналитического сигнала от содержания аналита, выраженная в виде формулы, графика или таблицы.
Примечание
В зависимости от вида выражения градуировочной характеристики используют словосочетания: градуировочная функция; градуировочный график; градуировочная таблица.
Диапазон измерений — область значений величины, в пределах которой нормированы допускаемые пределы погрешности средства измерений.
Чувстви́тельность — способность объекта реагировать определённым образом на определённое малое воздействие, а также количественная характеристика этой способности[1].
Вопрос №5.
Динамические характеристики, т.е. характеристики инерционных свойств элементов измерительного устройства. К ним относятся дифференциальное уравнение, описывающее работу СИ, переходные и импульсные функции, амплитудные и фазовые характеристики.
Вопрос №6.
Погрешности измерительных устройств могут быть абсолютными, относительными и приведенными. [1]
Автоматически коррекция погрешностей измерительных устройств. [2]
Для снижения погрешностей измерительных устройств широко применяют полностью замкнутые схемы, в которых выходной величиной замкнутой части схемы является код N. Этим условиям в наиболее полной мере соответствуют электрические постоянные - напряжение и ток. Поэтому большинство всех выпускаемых цифровых приборов с замкнутыми схемами являются цифровыми вольтметрами постоянного тока. Постоянное напряжение является величиной, удобной не только для точного измерения аналоговым прибором, но и для высокоточного и быстрого измерения цифровым прибором. Поэтому различные неэлектрические величины для цифрового измерения часто преобразуются в постоянное напряжение, которое затем измеряется цифровым прибором. [3]
Для снижения погрешностей измерительных устройств широко применяют полностью замкнутые схемы, в которых выходом является числовое значение измеряемой величины - код Nx, который в процессе уравновешивания вырабатывается цифровым автоматом. [4]
Для снижения погрешностей измерительных устройств широко применяют полностью замкнутые схемы, в которых выходной величиной замкнутой части схемы является код N. Этим условиям в наиболее полной мере соответствуют электрические постоянные - напряжение и ток. Поэтому большинство всех выпускаемых цифровых приборов с замкнутыми схемами являются цифровыми вольтметрами постоянного тока. Постоянное напряжение является величиной, удобной не только для точного измерения аналоговым прибором, но и для высокоточного и быстрого измерения цифровым прибором. Поэтому различные неэлектрические величины для цифрового измерения часто преобразуются в постоянное напряжение, которое затем измеряется цифровым прибором. [5]
Автоматическая коррекция погрешности измерительных устройств вырабатывается при использовании одной из следующих трех процедур: 1) измерения влияющих факторов - lV и расчета поправки по известной для данного измерительного устройства функции влияния А г з ( у); 2) измерения погрешности измерительного устройства, приведенной к его выходу; 3) измерения погрешности измерительного устройства, приведенной ко входу. [6]
Вопрос №7.
Надёжность - свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующим заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования.
Надёжность является комплексным свойством, которое в зависимости от назначения объекта и условий его эксплуатации может включать в себя безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определённое сочетание этих свойств как для объекта (здесь под объектом понимается определённое средство измерения), так и для его частей.
Вопрос №8.
Государственная система промышленных приборов и средств автоматизации (ГСП) -это совокупность унифицированных блоков, приборов и устройств для получения, обработки и использования информации. ГСП имеет единые параметры входных и выходных сигналов, а также унифицированные габаритные присоединительные размеры. Она построена по блочно-модульному принципу, что позволяет совершенствовать системы автоматического управления путем замены отдельных блоков и элементов.
По принадлежности к ГСП приборы и устройства подразделяются на три группы:
• системные, отвечающие всем без исключения требованиям ГСП;
• локального применения, по назначению, техническим и эксплуатационным характеристикам и конструктивным особенностям отвечающие требованиям ГСП, но не предназначенные для совместной работы в системах автоматического контроля, регулирования и управления с другими изделиями ГСП и не имеющие с ними сопряжения по информационной связи и конструктивному оформлению;
вспомогательные, предназначенные специально для исследования объектов автоматизации или испытаний и проверки изделий, входящих в ГСП.
Измерительные преобразователи, приборы и устройства в соответствии с ГОСТ 12997—76 «ГСП. Общие технические требования» классифицируются следующим образом: по выполняемым функциям; по виду энергии носителя сигналов; по метрологическим свойствам и по защищенности от воздействия окружающей среды.
Вопрос №9.
Прибор состоит из термобаллона , капиллярной трубки и манометрической части .
Вся система прибора (термобаллон, капилляр, манометрическая пружина) заполняется рабочим веществом. Термобаллон помещают в зону измерения температуры. При нагревании термобаллона давление рабочего вещества внутри замкнутой системы увеличивается. Увеличение давления воспринимается манометрической трубкой (пружиной), которая воздействует через передаточный механизм на стрелку или перо прибора. Термобаллон обычно изготовляют из нержавеющей стали, а капилляр — из медной или стальной трубки с внутренним диаметром 0,15—0,5 мм. В зависимости от назначения прибора длина капиллярной трубки может быть различна (до 60 м). Для защиты от механических повреждений капилляр помещают в защитную оболочку из стального плетеного рукава.
Иногда капилляра может не быть и термобаллон непосредственно соединяется с манометрической частью.
В манометрических термометрах применяют одновитковые, многовитковые (геликоидальные) с числом витков от 6 до 9 и спиральные манометрические трубки.
Манометрические термометры широко применяют в химических производствах. Они просты по устройству, надежны в работе и при отсутствии электропривода диаграммной бумаги — взрыво- и пожаробезопасны. С помощью этих приборов можно измерять температуру в диапазоне от —120 до +600° С.
Различают следующие типы манометрических термометров:
Газозаполненные (газовые), вся система которых заполнена газом под некоторым начальным давлением.
Жидкозаполненные (жидкостные), система которых заполнена жидкостью.
Конденсационные, в которых термобаллон частично заполнен низкокипящей жидкостью, а остальное его пространство заполнено парами этой жидкости.
Устройство всех типов манометрических термометров аналогично. Они бывают показывающими, самопишущими и контактными.
Газозаполненные термометры
Газозаполненные (газовые), вся система которых заполнена газом под некоторым начальным давлением. В газовых манометрических термометрах в качестве термометрического вещества обычно используют азот. Область применения газовых термометров по ГОСТ 8624—64 лежит в интервале от — 160 до +600°С. Дополнительные погрешности могут появиться при изменении температуры окружающей среды (коэффициент теплового расширения газов много больше, чем у жидкостей, и равен приблизительно 0,00365 град-1). Для уменьшения их приходится увеличивать размеры термобаллона и уменьшать сечение капилляра. Чем больше длина капилляра, тем больше получаются размеры термобаллона. При длине капилляра 60 м термобаллоны газовых термометров, серийно изготовляемых, имеют наружный диаметр 22 мм, а рабочую длину 435 мм. Такие размеры термобаллона могут создать трудности при установке их в объекты измерения. По ГОСТ 8624—64 допустимая дополнительная приведенная погрешность газовых термометров при отклонении температуры окружающей среды на 10°С не должна превышать 0,5%. Погрешность от изменения температуры для капилляра получается больше, чем для манометра. Погрешность возрастает пропорционально объему, а следовательно и длине капилляра. Она может быть уменьшена увеличением объема термобаллона при той же длине капилляра. Обычно оъем термобаллона составляет 90% общего объема термометра При правильно выбранном соотношении объемов термобаллона, капилляра и трубчатой пружины термометры могут работать достаточно точно без температурной компенсации при длине капилляра до 40—60 м. При очень большой длине капилляра необходимый объем, термобаллона становится слишком большим и значительно возрастает тепловая инерция прибора. К специфическим недостаткам газовых манометрических термометров относятся их сравнительно большая тепловая инерция, обусловленная низким коэффициентом теплообмена между стенками термобаллона и наполняющим его газом и малой теплопроводностью газа; большие размеры термобаллона, что затрудняет его установку на трубопроводах небольшого диаметра, и необходимость частой проверки. Последнее вызвано тем, что в эксплуатации газовых термометров возможны нарушение герметичности и утечка газа, что не всегда можно сразу заметить.
Жидкозаполненные термометры
Жидкозаполненные (жидкостные), система которых заполнена жидкостью.
В приборах этого типа вся система термометра заполняется жидкостью под некоторым начальным давлением. К жидкостям, применяемым для заполнения, предъявляются следующие требования: возможно больший коэффициент объемного расширения, высокая теплопроводность, небольшая теплоемкость и химическая инертность к материалу термометра. Для заполнения обычно применяют ртуть (в интервале температур от .—30 до +600° С) и ксилол (в интервале температур от —40 до +200° С). Для предохранения жидкости от закипания в термометре обеспечивается начальное давление порядка 1,47—1,96 МН/м2 (15—20 кгс/см2).
Благодаря большой теплопроводности жидкости термобаллон термометра сравнительно быстро принимает температуру измеряемой среды. Однако по этой же причине погрешности от колебания температуры окружающей среды у жидкостных термометров больше, чем у газовых. Температурные погрешности подсчитываются по тем же формулам, что и для газовых термометров.
При значительной длине капилляра для жидкостных термометров необходимо применять компенсационные устройства.
1 – термобаллон, 2 – основной капилляр, 3 - дополнительный капилляр, 4 и 5 - соответственно основная и вспомогательная спиральные трубчатые пружины
Рисунок 3 – Схема температурной компенсации жидкостного манометрического термометра
На рисунке показан один из вариантов компенсационного устройства, у которого рядом с основным капилляром есть дополнительный (компенсационный) капилляр, один конец которого (у термобаллона), запаян, а другой соединен со вспомогательной (компенсационной) пружиной. Оба капилляра и обе пружины заполняются одной и той же рабочей жидкостью и имеют одинаковые характеристики. С изменением температуры окружающей среды давление жидкости в обоих капиллярах и в обеих пружинах изменяется, вследствие чего вспомогательная пружина, раскручиваясь или скручиваясь, действует в направлении, противоположном действию основной пружины, и тем самым исключается влияние температуры окружающей среды на показания прибора. Для жидкостных термометров следует также учитывать погрешность, вызванную различным положением термобаллона относительно манометра по высоте; погрешность эту можно скомпенсировать установкой стрелки или пера прибора при помощи механического корректора на нуль или начало шкалы после монтажа термометра на месте. Жидкость практически несжимаема, поэтому изменение атмосферного давления не влияет на показания прибора.
Конденсационные термометры
Конденсационные, в которых термобаллон частично заполнен низкокипящей жидкостью, а остальное его пространство заполнено парами этой жидкости. У конденсационных манометрических термометров возможно появление дополнительных погрешностей: 1) гидростатической (из-за различной высоты расположения термобаллона и манометра) ; 2) атмосферной из-за колебания атмосферного давления (особенно для начала шкалы). В конденсационных термометрах термобаллон обычно заполняется на 2/3 объема низкокипящей жидкостью. Перед заполнением термометра воздух из системы удаляется. В замкнутой системе термометра всегда существует динамическое равновесие одновременно протекающих процессов испарения и конденсации. При повышении температуры усиливается испарение жидкости и увеличивается упругость пара, а в связи с этим усиливается также и процесс конденсации. В результате насыщенный пар достигает некоторого определенного давления, строго отвечающего температуре. Среда, заполняющая капилляр и манометрическую трубку, служит передатчиком давления, независимо от того, жидкая она или газообразная. Так как однозначная зависимость давления насыщенного пара от температуры существует только до критической температуры, то верхний предел шкалы термометра должен быть ниже критической температуры данной жидкости. Давление пара, изменяясь с температурой, передается через капилляр манометрической пружине. Изменение давления насыщенного пара непропорционально изменению температуры, поэтому шкала конденсационного теомометра получается неравномерной. Это — один из его недостатков. Изменение температуры капилляра и манометрической трубки не влияет на величину давления в системе конденсационного термометра; длина капилляра у термометров такого типа ограничивается в основном трением жидкости в капилляре. Жидкости для заполнения термометров должны быть химически чистыми, а точка кипения их — достаточно низкой, чтобы обеспечить необходимую величину давления в пределах измеряемых температур. Кроме того, они не должны воздействовать химически на материал термометра. Количество жидкости в термобаллоне не имеет существенного значения. Важно только, чтобы при наиболее низкой измеряемой температуре в термобаллоье было некоторое количество насыщенного пара, а при наиболее высокой температуре оставалось некоторое количество неиспарившейся жидкости. Термобаллон должен быть заполнен так, чтобь входящий в него открытый конец капиллярной трубки был во всех случаях погружен в жидкость. Нижний предел измерения конденсационным термометром ограничиваете? достаточной величиной давления пара. Конденсационные термометры более чувствительны, чем термометры других типов. Объясняется это тем, что давление насыщенного пара очень быстро изменяется с температурой Деформация манометрической трубки пропорциональна избыточному давлению насыщенных паров жидкости, т. е. разности давления паров и атмосферного давления. Поэтому изменение атмосферного давления влияет на показания прибора. Для уменьшения погрешности необходимо, чтобы давление насыщенных паров рабочей жидкости в диапазоне измеряемых температур был значительно больше атмосферного давления. Основная погрешность различных типов манометрических термометров составляет от ±0,5 до ±2,5% в зависимости от длины капиллярной трубки. При отклонении условий от нормальных возникают дополнительные погрешности, которые определяются расчетом и устраняются особыми приемами, описанными выше. Погрешность за счет температуры окружающей среды теоретически отсутствует, так как изменение объема передаточной жидкости приводит лишь к изменению соотношения между жидкой и паровой фазой в термобаллоне, не меняя в нем давления, зависящего только от температуры. Однако практически небольшая погрешность при изменении температуры окружающей среды все же наблюдается (за счет манометра) и нормируется (ГОСТ 8624—64) значением до 0,25% на каждые 10°С отклонения температуры от +20°С. Шкалы конденсационных термометров получаются существенно неравномерными из-за нелинейного соотношения между температурой кипения и соответствующим давлением (рис. 3-8). Рабочая часть шкалы располагается в верхней ее половине. Длина соединительного капилляра достигает 60 м. В качестве передаточной жидкости, заполняющей капилляр и манометр конденсационных термометров, чаще всего применяют глицерин (пропантриоль) в смеси со спиртом или водой Устройство всех типов манометрических термометров аналогично. Они бывают показывающими, самопишущими и контактными.
Вопрос 10.
Термоэлектрические термометры предназначены для измерения высоких температур. Термопары этих приборов защищены оболочками, обладающими жаростойкостью, газонепроницаемостью, способностью выдерживать резкие изменения температуры, хорошей теплопроводностью и механической прочностью.
По своему назначению авиационные термоэлектрические термометры можно разделить на три группы.
К первой группе относятся термометры типа ТВГ, ИТГ и ТСТ, служащие для измерения температуры выходящих газов турбореактивных, турбовинтовых авиационных двигателей и турбостартеров.
Ко второй группе относятся термометры типа ТЦТ, измеряющие температуру головок цилиндров поршневых двигателей и других твердых тел.
В третью группу объединяются измерительные системы типа ИТ, ИА, предназначенные для измерения температуры газов, выходящих из реактивного сопла двигателе и турбин низкого и высокого давления.
В качестве термопреобразователей в термоэлектрических термометрах используются различные термопары.
В термометрах ТВГ, ИТГ, ТСТ используются термопары типа Т-1, Т-9, Т-11, Т-80, Т-82К, Т-99 различных градуировок.
В измерительных системах применяются термопары типа Т-99, Т-38, Т-93.
Термопары помещают в жаропрочный корпус с камерой торможения, аналогичной показанной на рис. 17. и равномерно размещают по периметру одного сечения выходного сопла двигателя.
В термометрах ТЦТ горячий спай термоэлектрического преобразователя Т-3 градуировки ХК прикрепляется к медному кольцу, которое устанавливается под зажигательную свечу поршневого авиадвигателя.
Способы соединения термопар различны. В термометрах типа ТВГ, ТСТ термопары соединяются электрически в одну термобатарею последовательно. В измерительных системах тепмопреобразователи имеют две комбинации параллельно или параллельно - последовательно соединенных термоэлектродов, при этом одна группа термопреобразователей используется непосредственно для измерения температуры, а другая - в качестве датчика регулятора температуры. Указанные способы соединения позволяют получить суммарную термоЭДС, пропорциональную среднему значению температуры выходящих газов. Соединение термопреобразователей осуществляется в соединительных коробках, расположенных в таком месте самолета, где температура окружающей среды меняется незначительно и не превышает 100° С.
Вопрос 11.
Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В качестве материалов для изготовления чувствительных элементов термометров сопротивления используются чистые металлы: платина, медь, никель, железо и полупроводники. У металлических термометров сопротивление с возрастанием температуры увеличивается практически линейно, у большинства полупроводниковых, наоборот, уменьшается. Металлические термометры сопротивления изготовляют из тонкой проволоки, например, медной или платиновой, помещенной в электроизоляционный корпус. Зависимость электрического сопротивления от температуры весьма стабильна и воспроизводима в диапазоне температур (для медных термометров от -50 до +180°С, для платиновых - от -200 до +750°С). Это обеспечивает взаимозаменяемость термометров сопротивления. Для защиты термометров сопротивления от воздействия измеряемой среды применяют защитные чехлы. Приборостроительная промышленность выпускает много модификаций защитных чехлов, рассчитанных на эксплуатацию термометров при различном давлении, различной агрессивности измеряемой среды, обладающих разной инерционностью и глубиной погружения. Полупроводниковые термометры сопротивления (термисторы) имеют температурный коэффициент сопротивления (ТКС) практически на порядок больше, чем у металлов. Различают термисторы с отрицательным ТКС, у которых электрическое сопротивление с ростом температуры убывает, и с положительным ТКС, у которых оно возрастает. Для измерения температуры термисторы с положительным ТКС не используются из-за сильной нелинейности зависимости сопротивления от температуры. Основная область их применения - защитные устройства. Термисторы с отрицательным ТКС в основном применяются для измерения низких температур (от 1.5 до 400 градусов Кельвина). Достоинствами термисторов являются небольшие габариты, малая инерционность, высокий температурный коэффициент сопротивления. Однако они имеют и существенные недостатки: - нелинейный характер зависимости сопротивления от температуры; - отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных термисторов данного типа. Это приводит к выпуску термисторов с индивидуальной градуировкой. Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи выходным параметром - электрическим сопротивлением. Для измерения сопротивления такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный (4…20 мА или 0…10 В). Для этого в измерительную цепь включают промежуточный преобразователь.