
- •Техніка безпеки при роботі в лабораторії.
- •Перша допомога.
- •Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
- •Вміст у організмі та значення для організму макроелементів
- •Якісна реакція на катіони лужних металів - фарбування полум'я в наступні кольори:
- •Загальні хімічні властивості
- •Біологічна роль та застосування в медицині s та р – елементів
- •Заняття №1 Тема: Біогенні s-елементи; біологічна роль, застосування в медицині.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Заняття №2
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •3.Фізичні властивості :
- •4. Хімічні властивості d-елементів і їх сполук виходячи з будови атомів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання:
- •Приклад завдань для тестового контролю:
- •Методика виконання лабораторної роботи
- •Розділ 3 Комплексні сполуки
- •Класифікація та номенклатура комплексних сполук
- •Хімічний зв’язок у комплексних сполуках
- •Заняття №4
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Розділ 4 Вчення про розчини. Кислотно-основна рівновага біологічних рідин в організмі
- •Приклади розв’язування задач за темою «Розчини»
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 5. Розчини електролітів
- •Слабкі електроліти.
- •Сильні електроліти.
- •Теорія кислот і основ.
- •Дисоціація води.
- •Гідроліз солей. Ступінь та константа гідролізу
- •Буферні розчини.
- •Біохімічні буферні системи.
- •Самостійна позааудиторна робота студентів.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Відповідно, визначивши експериментальну різницю в температурах кипіння розчину і чистого розчинника
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 7
- •Основні поняття:
- •1Г вуглеводів 19,6 кДж
- •Хімічний склад і калорійність харчових продуктів
- •Задача 3
- •Задача 4
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Різниця цих рівнянь і дасть рівняння утворення кристалогідрату
- •Розділ 8. Хімічна кінетика
- •Залежність швидкості реакції від різних факторів.
- •Теорія активних комплексів.
- •Теорії каталізу
- •Ферментативний каталіз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9
- •Гальваноз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •1 Правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.
- •2 Правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.
- •Типи хроматографії.
- •Залежність форми кривих поглинання від виду адсорбції.
- •Йонообмінна хроматографія. В основі лежить процес йонного обміну
- •Тонкошарова хроматографія
- •Радіальна хроматографія
- •Хроматографія на папері.
- •Газова хроматографія (гх).
- •Заняття№15
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Заняття 16
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9 Дисперсні системи
- •Класифікація за ступенем дисперсності подідяють:
- •Класифікація дисперсних систем за агрегатним станом
- •Молекулярно-кінетичні властивості колоїдних систем
- •Оптичні властивості колоїдних систем.
- •Явища, що супроводжують коагуляцію.
- •Коагуляція в біологічних системах.
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 10 Розділ 9. Високомолекулярні сполуки
- •Контрольні питання.
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Розділ 11 класифікація і номенклатура органічних сполук. Реакційна здатність алканів, алкенів, аренів.
- •Теорія будови органічних сполук а.М. Бутлерова:
- •Класифікація органічних сполук
- •Основні класи органічних сполук
- •Номенклатура органічних сполук
- •Класифікація реакцій в органічній хімії
- •Насичені вуглеводні (алкани)
- •Гомологічний ряд алканів
- •Будова молекули Метану
- •Ізомерія
- •Фізичні властивості
- •Хімічні властивості
- •Ненасичені вуглеводні (Алкени, алкадієни, алкіни)
- •Алкени. Гомологічний ряд алкенів.
- •Електронна будова подвійного зв’язку
- • Подвійний зв’язок – це ковалентний зв’язок, який складається з одного - і одного π-зв’язку. Подвійному зв’язку відповідає sp2- гібридизація. Ізомерія
- •Одержання
- •Фізичні властивості
- •Хімічні властивості
- •Алкадієни.
- •Хімічні властивості алкадієнів
- •Електронна будова потрійного зв’язку
- • Потрійний зв’язок – це ковалентний зв’язок, який складається з одного - і двох π- звязків. Потрійному зв’язку відповідає sp гібридизація. Фізичні властивості алкінів
- •Хімічні властивості
- •I. Реакції приєднання:
- •Ароматичні вуглеводні (арени)
- •Будова молекули бензолу (бензену)
- •Гомологи бензолу. Ізомерія. Гомологи бензолу можна розглядати як похідні бензолу, в яких один або декілька атомів вуглецю заміщені різними вуглеводневими радикалами.
- •Фізичні властивості
- •Хімічні властивості
- •І. Реакції заміщення:
- •1) Галогенування
- •1) Гідрування:
- •2) Галогенування
- •Правила орієнтації в бензольному ядрі
- •Заняття 21
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Заняття №22.
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Розділ 12 оксигенвмісні органічні сполуки
- •Спирти.
- •Одноатомні спирти
- •Гомологічний ряд спиртів
- •Фізичні властивості
- •Заняття 23
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Самостійна робота на занятті.
- •Одержання
- •Гідратація алкінів: Хімічні властивості
- •1) Реакції приєднання
- •2) Реакція відновлення:
- •4) Реакції полімеризації:
- •Реакції поліконденсації
- •Застосування
- •Заняття 24
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Номенклатура
- •Ізомерія карбонових кислот
- •Одержання
- •3) Промисловий синтез оцтової кислоти:
- •Хімічні властивості
- •Застосування
- •Дикарбоновимі кислотами називають похідні вуглеводнів, які містять в своєму складі дві карбоксильні групи.
- •Естери (складні ефіри) – це сполуки, що складаються із залишку карбонової кислоти і спирту.
- •Номенклатура
- •Види ізомерії
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •Застосування
- •Ліпіди (жири)
- •Класифікація
- •Номенклатура
- •Одержання
- •Перший синтез жиру здійснив Бертло (1854 р.) при нагріванні гліцерину і стеаринової кислоти:
- •Хімічні властивості
- •Застосування
- •Біологічна роль (функції) жирів у людському організмі
- •Заняття 25.
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Методика виконання роботи
- •Розділ 15 дослідження хімічних властивостей моно- і полісахаридів.
- •Значення
- •Моносахариди. Будова. Ізомерія
- •Класифікація
- •Генетичний d- ряд сахаридів
- •Формули хеуорса
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •I. Реакції по карбонільній групі
- •1. Окиснення (для альдегідів)– призводить до утворення відповідних кислот.
- •2. Ацилювання (утворення складних ефірів).
- •III. Специфічні реакції
- •Класифікація і номенклатура
- •Застосування
- •Полісахариди
- •Крохмаль Будова молекули (розгалужений ланцюг)
- •Фізичні властивості
- •Хімічні властивості
- •Знаходження в природі
- •Застосування
- •Целюлоза (клітковина) Будова молекули (лінійний ланцюг)
- •Знаходження в природі
- •Застосування
- •Заняття № 26
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Література:
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Розділ 16 дослідження реакційної здатності гетерофункціональних сполук. Амінокислоти
- •Найважливіші представники гідроксикислот.
- •Амінокислоти
- •Класифікація амінокислот.
- •Класифікація α-амінокислот
- •Ізомерія
- •Фізичні властивості
- •Одержання амінокислот
- •Хімічні властивості
- •Біполярний йон
- •Пептиди. Білки
- •Склад і будова молекули
- •Поширення в природі
- •Хімічні властивості
- •Заняття 28
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Заняття 29 Тема: α-Амінокислоти, пептиди, білки.
- •3. Конкретні цілі,вміти:
- •Самостійна робота на занятті..
- •Гетероциклічні сполуки Класифікація гетероциклів
- •Номенклатура гетероциклічних сполук
- •П’ятичленні гетероцикли з одним гетероатомом
- •П’ятичленні гетероцикли з двома гетероатомами
- •Шестичленні гетероцикли Властивості і реакції шестичленних гетероциклічних сполук
- •2 Окиснення піридину і алкілпіридинів
- •Шестичленні гетероциклічні сполуки з двома гетероатомами
- •Біциклічні гетероцикли
- •Розділ 18 нуклеїнові кислоти
- •Рибонуклеїнові (рнк) і дезоксирибонуклеїнові (днк) кислоти.
Молекулярно-кінетичні властивості колоїдних систем
Із молекулярно-кінетичних властивостей для колоїдних розчинів як і для істинних характерні дифузія і осмотичний тиск. Але ці колігативні властивості для колоїдів мають значно меншу величину, що зумовлено більшим розміром частинок.
Як для істинних так і для колоїдних розчинів значення осмотичного тиску прямопропорційне концентрації.
Для колоїдних частинок характерні властивості специфічні – броунівський рух і седиментація.
Броунівський рух – це хаотичний рух частинок у мікро гетерогенних системах і є наслідком теплового руху частинок дисперсної фази і дисперсійного середовища.
Седиментація – процес осідання колоїдних частинок під дією сил земного тяжіння. Седиментаційний аналіз дозволяє визначати розміри частинок, ступінь дисперсності і інші параметри.
Оптичні властивості колоїдних систем.
Колоїдні системи відрізняються від істинних розчинів здатністю проявляти розсіювання світла відоме під явищем Тіндаля.
Так як розміри колоїдних частинок співмірні з довжиною світлових хвиль видимої області, промінь світла, що потрапляє на поверхню частини, розміри якої більші за довжину його хвилі, відбивається від неї і проходить дифракційне розсіювання світла.
Кількісно розсіювання світла описано законом Релея, згідно якого інтенсивність розсіяного світла (І) прямо пропорційне числу частинок (n), квадрату об’єму частинок (V2) і обернено пропорційне четвертій степені від довжини хвилі (λ4) падаючого світла:
де І0 – інтенсивність світла в напрямку, перпендикулярному до напрямку промення світла.
К – константа, що залежить від показника заломлення дисперсного середовища. Це рівняння дає можливість за експериментальними даними визначити концентрацію колоїдного розчину, коли відомі розміри дисперсних частинок, або вирішити обернене завдання – при відомій концентрації визначити розмір частинок.
Електрокінетичні властивості колоїдних систем
Властивості диспергованих колоїдних розчинів визначаються тим, що завдяки адсорбції йонів електролітів на поверхні колоїдних частинок вони набувають певного заряду, знак якого визначається законом адсорбованих частинок, а величина їх кількістю.
Навколо зарядженої частинки розташовані йони з протилежним зарядом, оточені молекулами розчинника.
При пропусканні постійного електричного струму через шматок глини в якій були поміщені дві скляні трубки заповненні водою, а на дні трубок поміщений пісок, переміщався до аноду, а біля катоду рівень води зростав. Цей дослід поставлений Рейсом показав, що частинки глини зарядженні негативно.
Рух частинок під дією зовнішнього електричного поля називається електрофорезом, а рух рідини через пористе тверде тіло – електроосмосом.
Електрофорез застосовується в клінічних лабораторіях з метою діагностики, а також при оцінці клітинного імунітету в онкологічних хворих.
Вивчення електрокінетичних властивостей мікро гетерогенних систем вказує, що на їх поверхні міститься подвійний електричний шар (ПЕШ).
Будова ПЕШ згідно з теорією Гельмгольца-Перрена має будову, представлену на
а) Будова ПЕШ за Гельмгольцем-Перреном |
б) Будова ПЕШ за Гуї-Чепменом |
в) Будова ПЕШ за Штерном |
Запропонована Гельмгольцем будова ПЕШ можлива лише при відсутності теплового руху йонів. У реальних умовах розподіл зарядів на межі фаз у першому наближенні визначається співвідношенням сил електростатичного притягання йонів і теплового руху йонів, які прагнуть рівномірно розподілятися у всьому об’ємі рідкої або газоподібної фази. Враховуючи це, Г. Гуі і Д. Чепмен запропонували свою модель ПЕШ, яка пропускає, що подвійний електричний шар має розпушену (дифузійну) будову і всі протийони знаходяться у його дифузійній частині (рис. 8.2 б).
Сучасна теорія будови ПЕШ – узагальнююча теорія Штерна. Аналізуючи недоліки попередніх теорій, Штерн припустив, що ПЕШ складається з двох частин: внутрішньої – адсорбційний шар і зовнішньої – дифузійний шар Гуі. Внутрішню частину ПЕШ, яка знаходиться безпосередньо біля міжфазової поверхні, Штерн уявляв як адсорбційний моноіонний шар, товщиною не менше двох радіусів йонів.
За сучасними уявленнями будова подвійного електричного шару визначається двома протилежними силами – електростатичними та дифузійними. В результаті взаємодії даних сил протийони утворюють два шари – адсорбційний (нерухомий) в якому йони міцно утримуються електростатичними силами на поверхні твердого тіла, та рухомий шар, в межах якого завдяки тепловому руху Йони вільно пересуваються. При цьому межі адсорбційного шару виникає різниця потенціалів, яка називається електрокінетичним або ξ (дзета потенціалом).
Електрокінетичний потенціал – це різниця потенціалів між нерухомим адсорбційним шаром, зв’язаним із поверхнею твердої фази, та рухомою масою рідини. Він є частиною термодинамічного потенціалу.
ξ =ε - ε1
Де ε1 – падіння потенціалу в нерухомому шарі, яке викликають адсорбовані в ньому йони. Визначається за формулою:
ξ
=
D – діалектрична стала розчинника;
H – градієнт потенціалу;
V – середня швидкість;
η – в’язкість розчину.
Агргативна стійкість – це здатність протидіяти злипанню, яке відбувається внаслідок зменшення поверхні поділу фаз.
Коагуляція – це процес злипання частинок дисперсної фази при втраті системою агрегативної стійкості. Це процес термодинамічно вигідний ∆G<0.
Викликати коагуляцію можуть різні фактори: різка зміна температури, інтенсивна механічна дія, дія світла, випромінювання. Та найбільшим фактором є дія електролітів.
Електроліти дуже швидко і різко впливають на товщину подвійного електричного шару і на величину ξ – потенціалу, який є одним із головних факторів стійкості колоїдних систем. Коагуляція відбувається при певній кількості електроліту. Мінімальна молярна концентрація, яка викликає коагуляцію колоїдного розчину називається (СК) – критичною концентрацією або порогом коагуляції. Це значення є критерієм стійкості.
Величина обернена порогу коагуляції називають коагулюючою здатністю VK:
Коагулююча здатність показує об’єм золю скоагульованого 1 молем йона-коагулятора. Початок коагуляції може бути визначений по різних ознаках - зміні забарвлення золя, появі каламуті, початку виділення дисперсної фази в осад і т.д. Поява цих ознак не завжди збігається в часі. Крім того, поріг коагуляції певною мірою залежить від концентрації золя. Тому поріг коагуляції є досить відносною характеристикою стійкості золя стосовно даного електроліту.
Експериментально встановлено 2 емпіричні правила. Перше встановив Г. Шульце (1882 р.) і друге – М. Гарді (1900 р.)
За правилом Гарді (правило значності) коагулюючу дію має не вся молекула електроліту, а лише той йон, який має заряд протилежний заряду гранули.
За правилом Шульце (правило валентності) коагулююча дія йона коагулятора тим більша, чим вища його валентність.
Згідно правила Шульце-Гарді критична концентрація йона-коагулятора зменшується із збільшення його валентності. Для двовалентних йонів поріг коагуляції в десятки раз, а для трьох валентних в сотні раз менший, ніж для одновалентних
Це тільки для неорганічних йонів бо органічні такі великі, і мають сильнішу коагулюючу дію.
Для побудови строгої теорії коагуляції треба було визначити кількісну міру коагуляції. Такою мірою є швидкість коагуляції:
-
зміна числа частинок за одиницю часу
t.
Існують багато теорій стійкості колоїдних частинок. Сучасна теорія – об’єднана теорія Б. Дерягіна, Л. Ландау (1937), Е. Фервей, Я.Овербек (1941) (ДЛФО) розглядає процес коагуляції як результат спільної дії молекулярної енергії притягання та електростатичної теорії відштовхування.
Згідно цієї теорії можна теоретично розрахувати ck не проводячи експериментальних дослідів. Результатом врахування всіх сил взаємодії можна одержати вираз порогу коагуляції:
де z – валентність йону коагулятора.
Якщо для одновалентного йону коагулятора ck = 1, то
Теоретичні розрахунки уточнюються з експериментальними даними. Знаючи процес коагуляції можна провести захист від цього явища, який називають колоїдним захистом. Це має важливе значення для біології та фармації. Так білки крові захищають краплинки холестерину та інших гідрофобних речовин від коагуляції. При деяких захворюваннях вміст захисних білків зменшується, що приводить до відкладання холестерину на стінках судин, утворення камінців у нирках та печінці. Явице колоїдного захусту використовують для одержання медичних бактерицидних препаратів.
Чим вищий заряд йона, тим вище його коагуляційна дія
РАІ3+ > РСа2+ > РК+
Відповідно для порогу коагуляції можна записати:
CK+ > CCa2+ > CAI3+
Тобто, чим нижчий заряд йона, тим при більшій концентрації електроліту буде відбуватися коагуляція. Такі ж ліотропні ряди можна записати і для аніонів:
Для йонів одного заряду коагулююча здатність залежить від радіуса сольватованого йона: чим більше радіус, тим менша його коагулятивна дія. Наприклад, для катіонів лужних металів можна записати наступний ліотропний ряд:
Для аніонів:
Коагуляційна здатність багатьох органічних речовин набагато вища, ніж неорганічних. Це зв'язано з їх високою адсорбційною здатністю. Такою властивістю володіють багато алкалоїдів, барвники, а також йони гідроксонію і гідроксид-йони.
Коагуляція багатьох ліофобних золів настає раніше, ніж досягається їх ізоелектричний стан. Дзета-потенціал, при якому починається явна коагуляція, називається критичним, його величина складає ± 30 мВ.