
- •Техніка безпеки при роботі в лабораторії.
- •Перша допомога.
- •Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
- •Вміст у організмі та значення для організму макроелементів
- •Якісна реакція на катіони лужних металів - фарбування полум'я в наступні кольори:
- •Загальні хімічні властивості
- •Біологічна роль та застосування в медицині s та р – елементів
- •Заняття №1 Тема: Біогенні s-елементи; біологічна роль, застосування в медицині.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Заняття №2
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •3.Фізичні властивості :
- •4. Хімічні властивості d-елементів і їх сполук виходячи з будови атомів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання:
- •Приклад завдань для тестового контролю:
- •Методика виконання лабораторної роботи
- •Розділ 3 Комплексні сполуки
- •Класифікація та номенклатура комплексних сполук
- •Хімічний зв’язок у комплексних сполуках
- •Заняття №4
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Розділ 4 Вчення про розчини. Кислотно-основна рівновага біологічних рідин в організмі
- •Приклади розв’язування задач за темою «Розчини»
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 5. Розчини електролітів
- •Слабкі електроліти.
- •Сильні електроліти.
- •Теорія кислот і основ.
- •Дисоціація води.
- •Гідроліз солей. Ступінь та константа гідролізу
- •Буферні розчини.
- •Біохімічні буферні системи.
- •Самостійна позааудиторна робота студентів.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Відповідно, визначивши експериментальну різницю в температурах кипіння розчину і чистого розчинника
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 7
- •Основні поняття:
- •1Г вуглеводів 19,6 кДж
- •Хімічний склад і калорійність харчових продуктів
- •Задача 3
- •Задача 4
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Різниця цих рівнянь і дасть рівняння утворення кристалогідрату
- •Розділ 8. Хімічна кінетика
- •Залежність швидкості реакції від різних факторів.
- •Теорія активних комплексів.
- •Теорії каталізу
- •Ферментативний каталіз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9
- •Гальваноз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •1 Правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.
- •2 Правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.
- •Типи хроматографії.
- •Залежність форми кривих поглинання від виду адсорбції.
- •Йонообмінна хроматографія. В основі лежить процес йонного обміну
- •Тонкошарова хроматографія
- •Радіальна хроматографія
- •Хроматографія на папері.
- •Газова хроматографія (гх).
- •Заняття№15
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Заняття 16
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9 Дисперсні системи
- •Класифікація за ступенем дисперсності подідяють:
- •Класифікація дисперсних систем за агрегатним станом
- •Молекулярно-кінетичні властивості колоїдних систем
- •Оптичні властивості колоїдних систем.
- •Явища, що супроводжують коагуляцію.
- •Коагуляція в біологічних системах.
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 10 Розділ 9. Високомолекулярні сполуки
- •Контрольні питання.
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Розділ 11 класифікація і номенклатура органічних сполук. Реакційна здатність алканів, алкенів, аренів.
- •Теорія будови органічних сполук а.М. Бутлерова:
- •Класифікація органічних сполук
- •Основні класи органічних сполук
- •Номенклатура органічних сполук
- •Класифікація реакцій в органічній хімії
- •Насичені вуглеводні (алкани)
- •Гомологічний ряд алканів
- •Будова молекули Метану
- •Ізомерія
- •Фізичні властивості
- •Хімічні властивості
- •Ненасичені вуглеводні (Алкени, алкадієни, алкіни)
- •Алкени. Гомологічний ряд алкенів.
- •Електронна будова подвійного зв’язку
- • Подвійний зв’язок – це ковалентний зв’язок, який складається з одного - і одного π-зв’язку. Подвійному зв’язку відповідає sp2- гібридизація. Ізомерія
- •Одержання
- •Фізичні властивості
- •Хімічні властивості
- •Алкадієни.
- •Хімічні властивості алкадієнів
- •Електронна будова потрійного зв’язку
- • Потрійний зв’язок – це ковалентний зв’язок, який складається з одного - і двох π- звязків. Потрійному зв’язку відповідає sp гібридизація. Фізичні властивості алкінів
- •Хімічні властивості
- •I. Реакції приєднання:
- •Ароматичні вуглеводні (арени)
- •Будова молекули бензолу (бензену)
- •Гомологи бензолу. Ізомерія. Гомологи бензолу можна розглядати як похідні бензолу, в яких один або декілька атомів вуглецю заміщені різними вуглеводневими радикалами.
- •Фізичні властивості
- •Хімічні властивості
- •І. Реакції заміщення:
- •1) Галогенування
- •1) Гідрування:
- •2) Галогенування
- •Правила орієнтації в бензольному ядрі
- •Заняття 21
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Заняття №22.
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Розділ 12 оксигенвмісні органічні сполуки
- •Спирти.
- •Одноатомні спирти
- •Гомологічний ряд спиртів
- •Фізичні властивості
- •Заняття 23
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Самостійна робота на занятті.
- •Одержання
- •Гідратація алкінів: Хімічні властивості
- •1) Реакції приєднання
- •2) Реакція відновлення:
- •4) Реакції полімеризації:
- •Реакції поліконденсації
- •Застосування
- •Заняття 24
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Номенклатура
- •Ізомерія карбонових кислот
- •Одержання
- •3) Промисловий синтез оцтової кислоти:
- •Хімічні властивості
- •Застосування
- •Дикарбоновимі кислотами називають похідні вуглеводнів, які містять в своєму складі дві карбоксильні групи.
- •Естери (складні ефіри) – це сполуки, що складаються із залишку карбонової кислоти і спирту.
- •Номенклатура
- •Види ізомерії
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •Застосування
- •Ліпіди (жири)
- •Класифікація
- •Номенклатура
- •Одержання
- •Перший синтез жиру здійснив Бертло (1854 р.) при нагріванні гліцерину і стеаринової кислоти:
- •Хімічні властивості
- •Застосування
- •Біологічна роль (функції) жирів у людському організмі
- •Заняття 25.
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Методика виконання роботи
- •Розділ 15 дослідження хімічних властивостей моно- і полісахаридів.
- •Значення
- •Моносахариди. Будова. Ізомерія
- •Класифікація
- •Генетичний d- ряд сахаридів
- •Формули хеуорса
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •I. Реакції по карбонільній групі
- •1. Окиснення (для альдегідів)– призводить до утворення відповідних кислот.
- •2. Ацилювання (утворення складних ефірів).
- •III. Специфічні реакції
- •Класифікація і номенклатура
- •Застосування
- •Полісахариди
- •Крохмаль Будова молекули (розгалужений ланцюг)
- •Фізичні властивості
- •Хімічні властивості
- •Знаходження в природі
- •Застосування
- •Целюлоза (клітковина) Будова молекули (лінійний ланцюг)
- •Знаходження в природі
- •Застосування
- •Заняття № 26
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Література:
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Розділ 16 дослідження реакційної здатності гетерофункціональних сполук. Амінокислоти
- •Найважливіші представники гідроксикислот.
- •Амінокислоти
- •Класифікація амінокислот.
- •Класифікація α-амінокислот
- •Ізомерія
- •Фізичні властивості
- •Одержання амінокислот
- •Хімічні властивості
- •Біполярний йон
- •Пептиди. Білки
- •Склад і будова молекули
- •Поширення в природі
- •Хімічні властивості
- •Заняття 28
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Заняття 29 Тема: α-Амінокислоти, пептиди, білки.
- •3. Конкретні цілі,вміти:
- •Самостійна робота на занятті..
- •Гетероциклічні сполуки Класифікація гетероциклів
- •Номенклатура гетероциклічних сполук
- •П’ятичленні гетероцикли з одним гетероатомом
- •П’ятичленні гетероцикли з двома гетероатомами
- •Шестичленні гетероцикли Властивості і реакції шестичленних гетероциклічних сполук
- •2 Окиснення піридину і алкілпіридинів
- •Шестичленні гетероциклічні сполуки з двома гетероатомами
- •Біциклічні гетероцикли
- •Розділ 18 нуклеїнові кислоти
- •Рибонуклеїнові (рнк) і дезоксирибонуклеїнові (днк) кислоти.
Контрольні питання.
Електродні потенціали, причини виникнення.
Рівняння Нернста.
Електроди 1 і 2-го роду.
Що таке стандартні електродні потенціали?
Будова і принцип дії водневого електроду.
Будова і принцип дії електроду порівняння.
Будова і принцип дії скляного електроду.
Будова і принцип дії мембранного електроду.
Як визначають стандартні електродні потенціали?
Що таке потенціометричне титрування?
Які складові необхідні для визначення рН розчину?
Як визначити точку еквівалентності при потенціометричному титруванні?
Що таке йонселективний електрод?
Самостійна робота на занятті.
Виконати лабораторні роботи:
Визначити потенціометричним методом рН розчинів електролітів та біологічних рідин.
Порівняти одержані дані з теоретичними значеннями.
Визначити концентрацію розчину хлоридної кислоти методом потенціометричного титрування розчином гідроксиду натрію.
Методика виконання роботи
Робота 1 Потенціометричне визначення рН розчинів електролітів та біологічних рідин.
рН- метр включають у електромережу на 15-20 хв. для прогріву. Хлорсрібний і скляний електрод разом із термометром під’єднюють до вимірювального блоку приладу і опускають у досліджуваний розчин. Ручку термокомпенсації ставлять навпроти значення за показом термометра. Натискають на клавішу «рН» і клавішу діапазон вимірювань
«1-14». Відмітивши покази приладу, на їх підставі натискують клавішу, яка відповідає більш вузькому діапазону рН. Записують визначення рН розчинів і біологічних рідин у таблицю:
-
№ п/п
Досліджуваний розчин
Кд
рН
експериментально
теоретично
1
0,1 М НСООН
1,77*10-4
2
0,1 М СН3СООН
1,75*10-5
3
0,1 М ССІ3СООН
1,4*10-3
4
0,1М NH4OH
1,77*10-5
Використовуючи дані таблиці, обчислити теоретичне значення рН досліджуваних розчинів слабких електролітів. Зробити висновки, порівнюючи числові значення рН одержані експериментально і теоретично.
Після роботи, сполоснувши електроди дистильованою водою, залишити їх в дистильованій воді. Вимкнути прилад.
Робота 2 Визначення концентрації соляної кислоти методом потенціометричного титрування гідроксидом натрію.
В чистий стакан відміряють 20 мл досліджуваного розчину НСІ, вносять в нього магнітик і ставлять на магнітну мішалку. Над посудиною прилаштовують мірну бюретку з 0,1 М розчином NаОН. Занурюють електроди (хлорсрібний і скляний) у досліджуваний розчин, вмикають рН-метр і вимірюють рН розчину до введення титранту і після кожної порції його додавання по 0,5 мл стандартного розчину результати вимірювання заносять у таблицю:
№ п/п |
Об’єм титранту, мл |
рН |
|
|
|
За результатами вимірювань будують графік (криву титрування). На осі абсцис відкладають об’єм титранту (NаОН), а на осі ординат – відповідні значення рН.
Знайшовши за графіком еквівалентну точку і опустивши з неї перпендикуляр на вісь абсцис, установлюють об’єм лугу, який витрачено на титрування певного об’єму досліджуваного розчину кислоти.
Користуючись відомим співвідношенням Сk*Vk=Cл*Vл, визначити концентрацію кислоти і зробити висновок.
РОЗДІЛ 8.
Поверхневі явища
Переважна більшість процесів у живому організмі проходить на межі поділу фаз і їх швидкість наряду з іншими факторами визначається площею поверхні до cтику фаз. Недарма загальна площа альвеол легень сягає 90 м2 (у 50 разів більша поверхні тіла), мембран усіх клітин – 15000 м2.
Вивчення фізико-хімії поверхневих явищ пов’язано з вивченням життєвих процесів. Поверхневі процеси – це процеси, які відбуваються на межі поділу фаз.
Перехід речовини із зони меншої концентрації у зону більшої концентрації, що відбувається на межі поділу фаз називається адсорбцією. По іншому- накопичення однієї речовини на поверхні іншої. Концентрування однієї речовини в об’ємі іншої називається абсорбцією.
Обидва ці процеси, які протікають разом, називаються сорбцією (поглинання). Речовина, на поверхні якої проходить сорбція (адсорбція), називається адсорбентом, або сорбентом, а речовина, що адсорбується – адсорбтивом (адсорбат) чи сорбтивом.
Процес, зворотній до адсорбції, називається десорбцією. Якщо він протікає при допомозі розчинників – елюція, а суміш розчинників – елюєнтом. Видалення адсорбованих молекул з поверхні адсорбентів називають десорбцією. Швидкість адсорбції з часом зменшується, а швидкість десорбції – збільшується. В залежності від того, що адсорбується – молекули чи йони, розрізняють відповідно молекулярну чи йонну адсорбцію. За природою сил взаємодії розрізняють хімічну адсорбцію (хемосорбцію) чи фізичну адсорбцію.
При хімічній адсорбції має місце хімічна взаємодія адсорбенту і адсорбтиву, при чому продукти реакції не виділяються в окрему фазу, а адсорбція, як правило, необоротна і збільшується з підвищенням температури, як і звичайна реакція.
При фізичній адсорбції задіяні слабкі міжмолекулярні сили взаємодії між адсорбентом і адсорбтивом. Фізична адсорбція відбувається повільніше, ніж хімічна. Вона оборотна і зменшується з підвищенням температури. В чистому виді хімічної чи фізичної адсорбції не буває, вони супроводжують одна іншу.
Кількісну залежність величини адсорбції на поверхні розчин – повітря від концентрації ПАР і поверхневого натягу описує рівняння Гіббса (1876р.)
де
- поверхнева активність, зміна поверхневого
натягу зі зміною концентрації
Г – адсорбція, молярний надлишок чи недостача розчинної речовини на 1 м2
поверхні: моль/м2;
с – загальна концентрація розчину, моль/л.
R – універсальна газова стала, Дж/моль·К;
Т – абсолютна температура, К.
Рівняння Гіббса є математичним обгрунтуванням загального правила: речовина, яка зменшує поверхневий натяг, концентрується в поверхневому шарі і навпаки.
Якщо поверхневий натяг зменшується при збільшенні концентрації речовини,
то
-
<0,
а адсорбція Г>0, то таку адсорбцію
називають позитивною.
Якщо ж >0, тобто поверхневий натяг збільшується із зростанням концентрації розчинної речовини, то Г<0, а така адсорбція називається негативною.
Для
визначення адсорбції необхідно побудувати
ізотерму поверхневого натягу. По ізотермі
поверхневого натягу можна визначити
тангенс кута нахилу дотичної до цієї
ізотерми.
. Це значення підставляють в рівняння
Гіббса як значення поверхневої активності.
Ізотерма поверхневого натягу та ізотерма адсорбції.
Аналіз ізотерми адсорбції Гіббса для ПАР свідчить,що при низьких концентраціях адсорбція пропорційна концентрації, при високих значеннях досягає свого граничного значення Гмакс і потім не змінюється. Гмакс постійна для всіх членів гомологічного ряду.
Поверхнева активність дифільних молекул залежить від довжини вуглеводневого радикалу. Біолог П. Дюкло та фізіолог І.Траубе сформулювали правило:
Поверхнева активність жирних кислот, спиртів і інших дифільних сполук у водних розчинах однакової концентрації збільшується у 3 – 3,5 рази зі збільшенням довжини вуглеводневого радикалу на одну – СН2 – групу.
З усіх адсорбційних явищ найбільше використовується адсорбція на поверхні твердого тіла. Так у медицині використовується гемосорбція, ентеросорбція, аплікаційна терапія і ін. При гемосорбції кров очищається від токсинів середньої молекулярної маси пропусканням її через адсорбент – активоване вугілля. Можна використовувати шматки селезінки тварин. Апарати для гемосорбції називають “штучною печінкою”. Вони є в реанімаційних відділеннях лікарень і застосовуються при нирковій чи печінковій недостатності, для лікування бутулізму, отруєння грибами, ліками, білій гарячці, атеросклерозу і псоріазу.
Різновидом ентеросорбції є використання активованого вугілля (карболену) і інших адсорбентів всередину для зв’язування отрут та токсинів в шлунково-кишковому тракті.
Аплікаційна терапія, що застосовується при лікуванні опіків та інших поверхневих патологій, також заснована на адсорбційних явищах.
Теоретична інтерпретація адсорбційних явищ на твердих адсорбентах дана в теорії Ленгмюра, що заснована на таких молекулярно-кінетичних засадах:
Адсорбція зумовлена фізико-хімічною взаємодією адсорбента і адсорбтива.
Адсорбція проходить не на всій поверхні, а на активних центрах. Активними центрами можуть виступати нерівності твердої поверхні, що характеризуються незкомпенсованими міжмолекулярними силами.
Адсорбція протікає до утворення мономолекулярного шару адсорбтиву.
Адсорбційний процес є рівноважний:
А+М АМ,
де А – активні центри адсорбенту
М – молекули адсорбтиву
АМ – комплекс молекул адсорбтиву з активним центром адсорбенту. Рівняння Ленгмюра виражає залежність величини адсорбції на поверхні твердого адсорбенту від концентрації адсорбтиву, а у випадку газів - від тиску газів при постійній температурі:
або
де
де х - кількість молів адсорбтиву,
m - маса адсорбента, так як питому поверхню його практично неможливо визначити.
-
гранична максимальна адсорбція, що
відповідає повному заповненню всіх
активних центрів молекулами адсорбтиву
з утворенням моношару.
К – константа адсорбційної рівноваги;
С і р – відповідно концентрація і тиск адсорбтиву.
Це рівняння дозволяє розрахувати величину адсорбції на одиницю маси адсорбенту. Воно добре описує експериментальні дані і пояснює лінійну залежність адсорбції при малих концентраціях і прямування її до насичення при високих концентраціях.
Залежність адсорбції від концентрації.
Якщо
С<<К,
то значенням С у знаменнику можна
знехтувати, тоді
пряма залежність Г від С.
Якщо С>> К, то можна знехтувати К: Г= тобто адсорбція набуває граничного значення і не залежить від концентрації адсорбтиву.
Проте пізніше було встановлено, що адсорбція не закінчується утворенням моношару, а протікає далі, тобто є багатошарова. Тому точніше описують адсорбцію S – подібні ізотерми Брунауера – Еммета – Тейлора (скорочено БЕТ). Оскільки ізотерма адсорбції на вигляд нагадує параболу, то Фрейндліх запропонував емпіричне рівняння:
-емпіричний
показник ступеня, що відображає ступінь
кривизни ізотерми.
Логарифмічна форма цього рівняння:
де К – константа, яка залежить від хімічної природи адсорбента та адсорбтива,
а с – рівноважна концентрація адсорбтива.
Тоді
К і
знаходять із графіка прямої лінії в
координатах lg
- lg
C.
Рівняння Фрейндліха справедливе при середніх значеннях тиску. Коли значення тиску малі, адсорбція зростає прямо пропорційно тиску, тоді результати одержані з рівняння Фрейндліха, будуть занижені. Коли значення тиску великі, тоді адсорбція не залежить від тиску, тому результати одержані з рівняння Фрейндліха, будуть завищені.
Ізотерми Фрейндліха.
Якщо розчинник змочує поверхню адсорбенту, то цим самим він зменшує адсорбцію адсорбтиву. Так силікагель, глина, що добре змочуються водою, погано адсорбують із водних розчинів і добре адсорбують розчинені речовини із неполярних розчинників. Неполярні адсорбенти, наприклад вугілля, є добрим поглиначем речовин із полярних розчинників, зокрема із води. Це відомо, як правило вирівнювання полярностей Ребіндера: розчинена речовина тим краще адсорбується, чим більша різниця полярностей між адсорбентом і розчинником.
Адсорбція електролітів на твердих адсорбентах здійснюється як за рахунок адсорбційних (молекулярних), так і електричних сил взаємодії, причому йони краще адсорбуються на поверхнях, які складаються із полярних молекул чи йонів.
Адсорбція електролітів.
При обмінній адсорбції електролітів відбувається вибіркове поглинання одного із йонів електроліту за рахунок витіснення із поверхні йонообмінника йонів того ж знаку. Тобто, в залежності від природи адсорбенту, відбувається обмін катіонів з поверхні на катіони з розчину, або аніонів на аніони з розчину. Тому йонообмінники, що є синтетичними полімерами, смолами діляться на катіоніти і аніоніти. Катіоніти містять в своєму складі йоногенні функціональні групи – СООН, - ОН, - SО3Н, -РО4Н, що можуть обмінювати катіони водню на катіони металу. Аніоніти містять групи, що здатні обмінювати аніони, наприклад: -NH3OH.
Особливістю йонообмінної адсорбції є те, що вона протікає в строго еквівалентних кількостях. Тому це може бути використано для кількісного визначення. Крім того використовується для очистки ліків та біологічно активних речовин: вітамінів, антибіотиків, білків, декальцинування крові і коров’ячого молока, а також пом’якшення і обезсолювання води.
У цьому випадку йонний обмін відбувається за схемою:
2Н – катіоніт + СаСl2 ® Са(катіоніт)2 + 2НСl
Аніоніт – ОН + НСl ® Аніоніт – Сl + Н2О
За допомогою йонообмінників очищають різні речовини: пепсин, трипсин, антитіла, гормони, антибіотики, вітаміни, алкалоїди. За допомогою йоніонітів визначають кислотність шлункового соку, регулюють склад йонного середовища у шлунково-кишковому тракті, зв’язують у ньому отруйні речовини, токсини, тощо.
Йонообмін має надзвичайно велике значення для очистки стічних вод, для розробки безвідходних виробництв, для вилучення забруднень із навколишнього середовища.
Для регенерації відпрацьованих йоніонітів їх обробляють відповідно розчинами кислот і лугів.
Якщо адсорбція однієї речовини перевищує адсорбцію іншої, то можна говорити про вибіркову, специфічну адсорбцію.
Правила вибіркової адсорбції сформульовані Панетом і Фаянсом: