
- •Техніка безпеки при роботі в лабораторії.
- •Перша допомога.
- •Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
- •Вміст у організмі та значення для організму макроелементів
- •Якісна реакція на катіони лужних металів - фарбування полум'я в наступні кольори:
- •Загальні хімічні властивості
- •Біологічна роль та застосування в медицині s та р – елементів
- •Заняття №1 Тема: Біогенні s-елементи; біологічна роль, застосування в медицині.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Заняття №2
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •3.Фізичні властивості :
- •4. Хімічні властивості d-елементів і їх сполук виходячи з будови атомів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання:
- •Приклад завдань для тестового контролю:
- •Методика виконання лабораторної роботи
- •Розділ 3 Комплексні сполуки
- •Класифікація та номенклатура комплексних сполук
- •Хімічний зв’язок у комплексних сполуках
- •Заняття №4
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Розділ 4 Вчення про розчини. Кислотно-основна рівновага біологічних рідин в організмі
- •Приклади розв’язування задач за темою «Розчини»
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 5. Розчини електролітів
- •Слабкі електроліти.
- •Сильні електроліти.
- •Теорія кислот і основ.
- •Дисоціація води.
- •Гідроліз солей. Ступінь та константа гідролізу
- •Буферні розчини.
- •Біохімічні буферні системи.
- •Самостійна позааудиторна робота студентів.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Відповідно, визначивши експериментальну різницю в температурах кипіння розчину і чистого розчинника
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 7
- •Основні поняття:
- •1Г вуглеводів 19,6 кДж
- •Хімічний склад і калорійність харчових продуктів
- •Задача 3
- •Задача 4
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Різниця цих рівнянь і дасть рівняння утворення кристалогідрату
- •Розділ 8. Хімічна кінетика
- •Залежність швидкості реакції від різних факторів.
- •Теорія активних комплексів.
- •Теорії каталізу
- •Ферментативний каталіз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9
- •Гальваноз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •1 Правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.
- •2 Правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.
- •Типи хроматографії.
- •Залежність форми кривих поглинання від виду адсорбції.
- •Йонообмінна хроматографія. В основі лежить процес йонного обміну
- •Тонкошарова хроматографія
- •Радіальна хроматографія
- •Хроматографія на папері.
- •Газова хроматографія (гх).
- •Заняття№15
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Заняття 16
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9 Дисперсні системи
- •Класифікація за ступенем дисперсності подідяють:
- •Класифікація дисперсних систем за агрегатним станом
- •Молекулярно-кінетичні властивості колоїдних систем
- •Оптичні властивості колоїдних систем.
- •Явища, що супроводжують коагуляцію.
- •Коагуляція в біологічних системах.
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 10 Розділ 9. Високомолекулярні сполуки
- •Контрольні питання.
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Розділ 11 класифікація і номенклатура органічних сполук. Реакційна здатність алканів, алкенів, аренів.
- •Теорія будови органічних сполук а.М. Бутлерова:
- •Класифікація органічних сполук
- •Основні класи органічних сполук
- •Номенклатура органічних сполук
- •Класифікація реакцій в органічній хімії
- •Насичені вуглеводні (алкани)
- •Гомологічний ряд алканів
- •Будова молекули Метану
- •Ізомерія
- •Фізичні властивості
- •Хімічні властивості
- •Ненасичені вуглеводні (Алкени, алкадієни, алкіни)
- •Алкени. Гомологічний ряд алкенів.
- •Електронна будова подвійного зв’язку
- • Подвійний зв’язок – це ковалентний зв’язок, який складається з одного - і одного π-зв’язку. Подвійному зв’язку відповідає sp2- гібридизація. Ізомерія
- •Одержання
- •Фізичні властивості
- •Хімічні властивості
- •Алкадієни.
- •Хімічні властивості алкадієнів
- •Електронна будова потрійного зв’язку
- • Потрійний зв’язок – це ковалентний зв’язок, який складається з одного - і двох π- звязків. Потрійному зв’язку відповідає sp гібридизація. Фізичні властивості алкінів
- •Хімічні властивості
- •I. Реакції приєднання:
- •Ароматичні вуглеводні (арени)
- •Будова молекули бензолу (бензену)
- •Гомологи бензолу. Ізомерія. Гомологи бензолу можна розглядати як похідні бензолу, в яких один або декілька атомів вуглецю заміщені різними вуглеводневими радикалами.
- •Фізичні властивості
- •Хімічні властивості
- •І. Реакції заміщення:
- •1) Галогенування
- •1) Гідрування:
- •2) Галогенування
- •Правила орієнтації в бензольному ядрі
- •Заняття 21
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Заняття №22.
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Розділ 12 оксигенвмісні органічні сполуки
- •Спирти.
- •Одноатомні спирти
- •Гомологічний ряд спиртів
- •Фізичні властивості
- •Заняття 23
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Самостійна робота на занятті.
- •Одержання
- •Гідратація алкінів: Хімічні властивості
- •1) Реакції приєднання
- •2) Реакція відновлення:
- •4) Реакції полімеризації:
- •Реакції поліконденсації
- •Застосування
- •Заняття 24
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Номенклатура
- •Ізомерія карбонових кислот
- •Одержання
- •3) Промисловий синтез оцтової кислоти:
- •Хімічні властивості
- •Застосування
- •Дикарбоновимі кислотами називають похідні вуглеводнів, які містять в своєму складі дві карбоксильні групи.
- •Естери (складні ефіри) – це сполуки, що складаються із залишку карбонової кислоти і спирту.
- •Номенклатура
- •Види ізомерії
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •Застосування
- •Ліпіди (жири)
- •Класифікація
- •Номенклатура
- •Одержання
- •Перший синтез жиру здійснив Бертло (1854 р.) при нагріванні гліцерину і стеаринової кислоти:
- •Хімічні властивості
- •Застосування
- •Біологічна роль (функції) жирів у людському організмі
- •Заняття 25.
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Методика виконання роботи
- •Розділ 15 дослідження хімічних властивостей моно- і полісахаридів.
- •Значення
- •Моносахариди. Будова. Ізомерія
- •Класифікація
- •Генетичний d- ряд сахаридів
- •Формули хеуорса
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •I. Реакції по карбонільній групі
- •1. Окиснення (для альдегідів)– призводить до утворення відповідних кислот.
- •2. Ацилювання (утворення складних ефірів).
- •III. Специфічні реакції
- •Класифікація і номенклатура
- •Застосування
- •Полісахариди
- •Крохмаль Будова молекули (розгалужений ланцюг)
- •Фізичні властивості
- •Хімічні властивості
- •Знаходження в природі
- •Застосування
- •Целюлоза (клітковина) Будова молекули (лінійний ланцюг)
- •Знаходження в природі
- •Застосування
- •Заняття № 26
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Література:
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Розділ 16 дослідження реакційної здатності гетерофункціональних сполук. Амінокислоти
- •Найважливіші представники гідроксикислот.
- •Амінокислоти
- •Класифікація амінокислот.
- •Класифікація α-амінокислот
- •Ізомерія
- •Фізичні властивості
- •Одержання амінокислот
- •Хімічні властивості
- •Біполярний йон
- •Пептиди. Білки
- •Склад і будова молекули
- •Поширення в природі
- •Хімічні властивості
- •Заняття 28
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Заняття 29 Тема: α-Амінокислоти, пептиди, білки.
- •3. Конкретні цілі,вміти:
- •Самостійна робота на занятті..
- •Гетероциклічні сполуки Класифікація гетероциклів
- •Номенклатура гетероциклічних сполук
- •П’ятичленні гетероцикли з одним гетероатомом
- •П’ятичленні гетероцикли з двома гетероатомами
- •Шестичленні гетероцикли Властивості і реакції шестичленних гетероциклічних сполук
- •2 Окиснення піридину і алкілпіридинів
- •Шестичленні гетероциклічні сполуки з двома гетероатомами
- •Біциклічні гетероцикли
- •Розділ 18 нуклеїнові кислоти
- •Рибонуклеїнові (рнк) і дезоксирибонуклеїнові (днк) кислоти.
Залежність швидкості реакції від різних факторів.
Підвищення температури значно збільшує швидкість реакції. Це можна пояснити збільшенням хаотичності руху молекул, що приводить до збільшення кількості зіткнень.
Залежність
швидкості реакції від температури
визначається емпіричним правилом
Вант-Гоффа, при підвищенні температури
реакції на 10 0С
швидкость реакції зростає в 2-4 рази. Це
залежить від природи реагуючих речовин
і визначається температурним коефіцієнтом
g,
який можна розрахувати g
=
Kt+10
/
Kt,,
В організмі людини і тварин більшість реакцій протікають за участю білкових каталізаторів - ферментів. З підвищенням температури швидкість біохімічних реакцій значно зростає, температурний коефіцієнт зростає (7-10) і береться для більш вузького діапазону температур (2,3,50). Температурний коефіцієнт в різних діапазонах не постійний.
Не треба забувати вузький температурний діапазон ферментативних реакцій - оптимальним діапазоном яких є 36–42 0С. При температурі вище 42 0С проходить до термоденатурації білка і швидкість хімічних реакцій сповільнюється.
Вплив тиску на швидкість хімічних реакцій має велике значення для реакцій в газовій фазі і дуже мале для твердофазних і рідкофазних реакцій. На реакції в газовій фазі тиск впливає так само, як і зміна концентрації. Пряма залежність між р і с дозволяє використати рівняння швидкості в такому вигляді:
uпр= K1 * рАа * рВв
Вплив розчинника на швидкість реакції має значення для рідкофазних реакцій. Розчинник може прискорювати реакцію, впливаючи на поляризацію зв’язків в речовині. А полярні розчинники можуть збільшувати швидкість переходу реагуючих молекул в активну йонізовану форму.
Теорія активних комплексів.
Для визначення швидкості і напрямку хімічної реакції основним є енергія активації. Швидкість будь-якої хімічної реакції залежить від числа зіткнень реагуючих речовин за одиницю часу. Якби всі зіткнення супроводжувались взаємодією, то реакції протікали б за дуже короткий час. Однак реакція відбувається лише при протіканні ефективних зіткнень, число яких в порівнянні з реальним мале. Це зумовлене тим, що в реакцію вступає та частина молекул, що мають підвищений запас кінетичної енергії. Такі молекули називають активними, а енергію, якою повинні володіти такі молекули - енергією активації. Найчастіше лише певна кількість молекул мають достатню енергію активації і тому можуть вступати в реакцію.
Теорію активації, тобто здатність вступати в реакцію активних молекул, висунув С. Арреніус (1889р). Він запропонував зв’язати константу швидкості хімічної реакції з температурою таким рівнянням:
K=Aе-Еа/RT
де K - константа швидкості реакції моль/л*с
А - предекспоненціальний множник, чисельно рівний тому найбільшому значенню константи K, яке б вона мала, якби всі без виключення молекули були активними.
Еа - енергія активації Дж/моль.
R - універсальна газова постійна 8,314 Дж/моль*К.
T - абсолютна температура.
е - основа натурального логарифму
В логарифмічному вигляді:
або для десяткових логарифмів
і позначивши – Ea / R 2,303=а і lgА=в одержим спрощене рівняння Арреніуса
lgK=в + а/T
де а і в постійні, які можна визначити, побудувавши графічну залежність величини lgK від 1/Т тої чи іншої реакції. Так як логарифмічні рівняння відображаються у вигляді прямої, то побудувавши графік реальної залежності lgK від 1/Т можемо визначити константи а і в.
З
графіка знаходимо
.
Звідси можна знайти Еа: Еа=-R*tg
lgK
j
1/T
Рис. 3.3 Графік залежності lgK від 1/Т
Якщо розглядати хімічну реакцію як процес, що супроводжується розривом старих зв’язків і утворенням нових, то енергію активації можна розглянути як енергію розриву старих зв’язків. При цьому енергія, яка виділяється в ході проведення реакції, частково або повністю компенсує енергію затрачену на збудження реакції. Але тоді енергія активації більшості молекул повинна бути більшою, ніж та, що спостерігається на практиці. Це може бути пояснено тим, що ці процеси проходять не відособлено, а при їх взаємному впливі. При цьому першою стадією хімічного процесу є стадія утворення нестійкої проміжної сполуки - активованого (активного) комплексу. Це комплекс, у якому ще не зникли зв’язки між молекулами, що вступають в реакцію і новими молекулами. Утворення такого комплексу вимагає менших затрат енергії, ніж просто розрив зв’язків із вихідних сполук. Таким чином, утворення активованого комплексу приводить до зменшення висоти бар’єру енергетичної активації.
Якщо Еа < 20 кДж/моль, то реакції проходять при температурі до 50 0С.
Еа > 120 кДж/моль, то t > 250 0C.
Наявність каталізатора, який будучи введений в реакційну систему різко змінює швидкість реакції, має важливе значення для протікання багатьох хімічних і біохімічних процесів.
Якщо розглянути хімічну реакцію як процес затрати енергії на зниження бар’єру енергії активації, то речовини, які допомагають знижувати енергію активації, називають каталізаторами.
Якщо каталізатор приводить до прискорення хімічної реакції, то такий каталіз називається позитивним, якщо реакцію сповільнює, то це негативний каталіз. Якщо ж прискорення проходить в результаті утворення каталізатора в процесі реакції, то така реакція буде автокаталітичною.
Види каталізу:
1) гомогенний;
2) гетерогенний;
мікрогетерогенний.
Мікрогетерогенний каталіз зв’язаний в основному з ферментативними процесами.
В світі тварин і рослин, де всі хімічні процеси проходять при звичайних умовах (р,t), всі хімічні процеси каталізуються ферментами, що є білками. У процесах, що протікають в присутності таких каталізаторів немає типового розділу фаз , в той же час реакція не є гомогенна, а білки утворюють псевдоколоїдні розчини.
Важливою властивістю каталізатора є відсутність його впливу на величину константи рівноваги реакції. Каталізатор може тільки змінювати швидкість реакції, але не зміщувати її.
Гомогенний каталіз протікає в одній фазі (газоподібній чи рідкій) як і реагуючі речовини . Каталізатор і реагенти знаходяться в йонному і молекулярному стані, між ними немає поверхні розділу.
Приклади гомогенного каталізу:
1) окислення so2 в so3 за допомогою газоподібних оксидів азоту.
2) гідроліз дисахаридів при участі невеликих кількостей сильних кислот і ін.
Більшість дослідників схильні вважати, що основою для пояснення механізму гомогенного каталізу є теорія утворення проміжного комплексу.
К
аталізаторами
можуть бути йони металів, каталітичною
дією яких є періодична зміна їх
валентності: Cu+
Cu2+
Fe2+
Fe3+.
Гетерогенний каталіз протікає на поверхні розділу фаз, тобто реакція йде на поверхні каталізатора.
Прикладом гетерогенного каталізу служить синтез спирту із суміші СО і Н2
( СО+2H2®CH3-OH ), процеси гідрування, дегідрування, дегідратації і ін.
Ці процеси протікають в декілька стадій:
наближення реагентів до поверхні каталізатора;
адсорбція і орієнтація молекул реагента на активних центрах;
деформація зв’язків в молекулах;
хімічне перетворення в активованих молекулах;
десорбція і відділення продуктів реакцій з поверхні каталізатора
Каталізатори можуть вступати в сполучення із реагентами багатократно, тому малі кількості каталізатора можуть змінювати великі кількості реагента , що підвищує ланцюговий механізм каталізу. Застосування каталізаторів в різних промислових процесах робить їх вигідними.
Каталізатори мають специфічну вибірковість на певний вид зв’язку. Інколи може бути кілька напрямів перебігу реакції
CH2O
Cu
CH3OH
NaOH
СO+H2
вищі
спирти
Ni
CH4
парафіни
Різні каталізатори каталізують різні напрямки реакції. Теоретично це маловивчено, але при можливості вибору проходять реакції, які вимагають найменшої енергії активації. Таким чином, каталітична дія проявляється у зниженні енергії активації.
Рис.3.4. Вплив каталізатора на енергію активації.
При цьому Е2+Е3<Е1:
А+В®АВ Е1
А+К®АК Е2
АК+В®АВ+К Е3
Так реакції вимагають різної енергії активації.
некаталітичні реакції
Еа=45-30 ккал/моль
2)каталітичні
Еа=30-16 ккал/моль
3)ферментативні реакції
Еа=12-8 ккал/моль