
- •Техніка безпеки при роботі в лабораторії.
- •Перша допомога.
- •Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
- •Вміст у організмі та значення для організму макроелементів
- •Якісна реакція на катіони лужних металів - фарбування полум'я в наступні кольори:
- •Загальні хімічні властивості
- •Біологічна роль та застосування в медицині s та р – елементів
- •Заняття №1 Тема: Біогенні s-елементи; біологічна роль, застосування в медицині.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Заняття №2
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •3.Фізичні властивості :
- •4. Хімічні властивості d-елементів і їх сполук виходячи з будови атомів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання:
- •Приклад завдань для тестового контролю:
- •Методика виконання лабораторної роботи
- •Розділ 3 Комплексні сполуки
- •Класифікація та номенклатура комплексних сполук
- •Хімічний зв’язок у комплексних сполуках
- •Заняття №4
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Розділ 4 Вчення про розчини. Кислотно-основна рівновага біологічних рідин в організмі
- •Приклади розв’язування задач за темою «Розчини»
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 5. Розчини електролітів
- •Слабкі електроліти.
- •Сильні електроліти.
- •Теорія кислот і основ.
- •Дисоціація води.
- •Гідроліз солей. Ступінь та константа гідролізу
- •Буферні розчини.
- •Біохімічні буферні системи.
- •Самостійна позааудиторна робота студентів.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Відповідно, визначивши експериментальну різницю в температурах кипіння розчину і чистого розчинника
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 7
- •Основні поняття:
- •1Г вуглеводів 19,6 кДж
- •Хімічний склад і калорійність харчових продуктів
- •Задача 3
- •Задача 4
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Різниця цих рівнянь і дасть рівняння утворення кристалогідрату
- •Розділ 8. Хімічна кінетика
- •Залежність швидкості реакції від різних факторів.
- •Теорія активних комплексів.
- •Теорії каталізу
- •Ферментативний каталіз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9
- •Гальваноз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •1 Правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.
- •2 Правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.
- •Типи хроматографії.
- •Залежність форми кривих поглинання від виду адсорбції.
- •Йонообмінна хроматографія. В основі лежить процес йонного обміну
- •Тонкошарова хроматографія
- •Радіальна хроматографія
- •Хроматографія на папері.
- •Газова хроматографія (гх).
- •Заняття№15
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Заняття 16
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9 Дисперсні системи
- •Класифікація за ступенем дисперсності подідяють:
- •Класифікація дисперсних систем за агрегатним станом
- •Молекулярно-кінетичні властивості колоїдних систем
- •Оптичні властивості колоїдних систем.
- •Явища, що супроводжують коагуляцію.
- •Коагуляція в біологічних системах.
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 10 Розділ 9. Високомолекулярні сполуки
- •Контрольні питання.
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Розділ 11 класифікація і номенклатура органічних сполук. Реакційна здатність алканів, алкенів, аренів.
- •Теорія будови органічних сполук а.М. Бутлерова:
- •Класифікація органічних сполук
- •Основні класи органічних сполук
- •Номенклатура органічних сполук
- •Класифікація реакцій в органічній хімії
- •Насичені вуглеводні (алкани)
- •Гомологічний ряд алканів
- •Будова молекули Метану
- •Ізомерія
- •Фізичні властивості
- •Хімічні властивості
- •Ненасичені вуглеводні (Алкени, алкадієни, алкіни)
- •Алкени. Гомологічний ряд алкенів.
- •Електронна будова подвійного зв’язку
- • Подвійний зв’язок – це ковалентний зв’язок, який складається з одного - і одного π-зв’язку. Подвійному зв’язку відповідає sp2- гібридизація. Ізомерія
- •Одержання
- •Фізичні властивості
- •Хімічні властивості
- •Алкадієни.
- •Хімічні властивості алкадієнів
- •Електронна будова потрійного зв’язку
- • Потрійний зв’язок – це ковалентний зв’язок, який складається з одного - і двох π- звязків. Потрійному зв’язку відповідає sp гібридизація. Фізичні властивості алкінів
- •Хімічні властивості
- •I. Реакції приєднання:
- •Ароматичні вуглеводні (арени)
- •Будова молекули бензолу (бензену)
- •Гомологи бензолу. Ізомерія. Гомологи бензолу можна розглядати як похідні бензолу, в яких один або декілька атомів вуглецю заміщені різними вуглеводневими радикалами.
- •Фізичні властивості
- •Хімічні властивості
- •І. Реакції заміщення:
- •1) Галогенування
- •1) Гідрування:
- •2) Галогенування
- •Правила орієнтації в бензольному ядрі
- •Заняття 21
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Заняття №22.
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Розділ 12 оксигенвмісні органічні сполуки
- •Спирти.
- •Одноатомні спирти
- •Гомологічний ряд спиртів
- •Фізичні властивості
- •Заняття 23
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Самостійна робота на занятті.
- •Одержання
- •Гідратація алкінів: Хімічні властивості
- •1) Реакції приєднання
- •2) Реакція відновлення:
- •4) Реакції полімеризації:
- •Реакції поліконденсації
- •Застосування
- •Заняття 24
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Номенклатура
- •Ізомерія карбонових кислот
- •Одержання
- •3) Промисловий синтез оцтової кислоти:
- •Хімічні властивості
- •Застосування
- •Дикарбоновимі кислотами називають похідні вуглеводнів, які містять в своєму складі дві карбоксильні групи.
- •Естери (складні ефіри) – це сполуки, що складаються із залишку карбонової кислоти і спирту.
- •Номенклатура
- •Види ізомерії
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •Застосування
- •Ліпіди (жири)
- •Класифікація
- •Номенклатура
- •Одержання
- •Перший синтез жиру здійснив Бертло (1854 р.) при нагріванні гліцерину і стеаринової кислоти:
- •Хімічні властивості
- •Застосування
- •Біологічна роль (функції) жирів у людському організмі
- •Заняття 25.
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Методика виконання роботи
- •Розділ 15 дослідження хімічних властивостей моно- і полісахаридів.
- •Значення
- •Моносахариди. Будова. Ізомерія
- •Класифікація
- •Генетичний d- ряд сахаридів
- •Формули хеуорса
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •I. Реакції по карбонільній групі
- •1. Окиснення (для альдегідів)– призводить до утворення відповідних кислот.
- •2. Ацилювання (утворення складних ефірів).
- •III. Специфічні реакції
- •Класифікація і номенклатура
- •Застосування
- •Полісахариди
- •Крохмаль Будова молекули (розгалужений ланцюг)
- •Фізичні властивості
- •Хімічні властивості
- •Знаходження в природі
- •Застосування
- •Целюлоза (клітковина) Будова молекули (лінійний ланцюг)
- •Знаходження в природі
- •Застосування
- •Заняття № 26
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Література:
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Розділ 16 дослідження реакційної здатності гетерофункціональних сполук. Амінокислоти
- •Найважливіші представники гідроксикислот.
- •Амінокислоти
- •Класифікація амінокислот.
- •Класифікація α-амінокислот
- •Ізомерія
- •Фізичні властивості
- •Одержання амінокислот
- •Хімічні властивості
- •Біполярний йон
- •Пептиди. Білки
- •Склад і будова молекули
- •Поширення в природі
- •Хімічні властивості
- •Заняття 28
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Заняття 29 Тема: α-Амінокислоти, пептиди, білки.
- •3. Конкретні цілі,вміти:
- •Самостійна робота на занятті..
- •Гетероциклічні сполуки Класифікація гетероциклів
- •Номенклатура гетероциклічних сполук
- •П’ятичленні гетероцикли з одним гетероатомом
- •П’ятичленні гетероцикли з двома гетероатомами
- •Шестичленні гетероцикли Властивості і реакції шестичленних гетероциклічних сполук
- •2 Окиснення піридину і алкілпіридинів
- •Шестичленні гетероциклічні сполуки з двома гетероатомами
- •Біциклічні гетероцикли
- •Розділ 18 нуклеїнові кислоти
- •Рибонуклеїнові (рнк) і дезоксирибонуклеїнові (днк) кислоти.
Самостійна робота на занятті.
Виконати лабораторні роботи:
Визначити осмотичний тиск розчину сахарози.
Виростити “штучну клітину”.
Одержати деревоподібні утворення.
Методика виконання роботи
Робота 1. Осмос і осмотичний тиск.
Пробірку без дна із закріпленою на ній напівпроникною мембраною наповнюють 70 %-ним розчином сахарози, закривають корком з отвором, в якому вставлена скляна трубка з зігнутим кінцем. Осмометр закріпляють в штативі, а розчин відділений мембраною опускають в склянку з дистильованою водою. Внаслідок ендоосмосу рідина в трубці підіймається на певну висоту. Стовпчик рідини в трубці показує величину осмотичного тиску.
Намалювати осмометр і зробити відповідні висновки.
Робота 2. Ріст "штучної клітини" Траубе.
В пробірку поміщають кілька кристалів калій гексаціано-(ІІ)-феррату (жовта кров'яна сіль) К4[Fе(СN)6]. Доливають 4-5 мл 5%-ного розчину сульфату міді. Кристалики солі, розчиняючись, взаємодіють з сульфатом міді. При цьому утворюється напівпроникна мембрана гексаціано-(ІІ)-феррату міді, Сu2[Fе(СN)6], яка пропускає воду, але не пропускає йони солі. Зобразити малюнком ці утворення і зробити відповідний висновок.
Робота 3. Одержання деревоподібних утворень.
В чотири пробірки наливають по 4-5 мл розведеного силікатного клею і опускають в кожну пробірку відповідно кристали хлоридів кобальту, марганцю, нікелю, міді. Через деякий час з кристаликів виростають деревоподібні утворення.
Зробити відповідні малюнки і пояснити ці явища.
Розділ 7
Термодинаміка - це наука про взаємні переходи форм енергії.
Хімічна термодинаміка - вивчає зміни енергії при хімічних реакціях та фазових переходах. Вона встановлює стійкість хімічних речовин, можливість, напрямок і межі протікання реакцій, вплив основних факторів: тиску, температури, концентрації на здійснення хімічного процесу.
В живих організмах постійно проходить обмін речовин (метаболізм). Це сукупність багатьох хімічних реакцій, які супроводжуються виділенням і поглинанням енергії. Цей процес обміну речовин і енергії є характерною ознакою життя. Тому для медиків важливо знати основні закони термодинаміки, її методи, які допомагають зрозуміти і вивчити процеси життєдіяльності.
Основні поняття:
Система - частина фізичного світу (речовина чи сукупність тіл), що має реальну чи уявну границю від навколишнього середовища і характеризується певними властивостями (клітина, нервова система живого організму, серцево-судинна система, система травлення і т.д).
Системи діляться на: гомогенні (однорідні), які не мають границі поділу фаз; гетерогенні (неоднорідні), які мають границю поділу фаз.
Системи можуть бути: ізольовані (ідеальні) які не обмінюються з навколишнім середовищем ні масою ні енергією; закриті, що обмінюються енергією але не обмінюються масою; відкриті, які обмінюються із навколишнім як енергією так і масою.
Всі живі організми - відкриті гетерогенні системи.
Стан системи - сукупність фізичних і хімічних властивостей системи, які описуються за допомогою термодинамічних факторів, які вона має в даний момент. Cтан системи може змінюється. Якщо система не змінюється в часі, то такий стан називається рівноважний. Рівновага найчастіше буває динамічною, тобто коли процеси протікають з однаковою швидкістю так, що в цілому система не змінюється.
Фаза - це сукупність всіх однорідних по складу і фізико-хімічних властивостях частин системи відокремлених чіткою границею розділу. Так гомогенна система складається із однієї фази (однофазна), а гетерогенна із кількох фаз.
Компоненти системи - це її незалежні складники. Кожен компонент - індивідуальна речовина, яка може бути виділена і може існувати самостійно.
Наприклад: фізіологічний розчин, який є 0,9 % NaCІ - це система гомогенна, однофазна і двохкомпонентна, яка складається із NaCІ і Н2О.
Параметри стану системи - це величини, які можна визначити безпосередньо вимірюванням. Такими параметрами є температура, тиск, об’єм, концентрація речовин.
Функції стану системи - величини які кількісно описують систему і залежать від параметрів.
Функціями стану системи є:
-внутрішня енергія - U
-ентальпія системи - H
-ентропія - S
-вільна енергія - G
Закони термодинаміки.
Перший закон. Це закон збереження енергії, який має кілька формулювань, що визначають його суть:
1) В ізольованій системі сума всіх видів енергії стала, а отже не може збільшуватись без взаємодії з навколишнім середовищем.
Вічний двигун першого роду неможливий. Сталість енергіії ізольованої системи не виключає можливості переходу одного з видів енргії в інший.
Переходи енергії здійснюються в строго еквівалентних співвідношеннях.
Для
реальних систем підведення деякої
кількості теплоти (Q
-
тепловий ефект) може бути використано
на збільшення внутрішньої енергії
системи(
U)
здійснення роботи
проти
зовнішніх сил (А),
що можна виразити таким співвідношенням:
Q= U+A
де U - внутрішня енергія системи - весь запас енергії системи, що включає в себе енергію руху молекул, атомів, електронів в атомах і молекулах і інші види внутрішньої енергії.
Внутрішня енергія залежить від природи речовини і її маси.
Неможливо визначити абсолютне значення внутрішньої енергії системи, визначається лише зміна внутрішньої енергії при переході з одного стану в інший.
U=U2-U1
Формами передачі енергії є теплота і робота. Теплота - це форма передачі енергії, що здійснюється в системі шляхом безпосереднього контакту мікрочастин, що хаотично рухаються.
Робота (А) є формою передачі енергії. В організмі всі процеси протікають при постійному тиску тобто є ізобарними р=const
A=p V=RT n
отже Qp= U+p V= U+RT n
так як U=U2-U1 a V=V2-V1 , то
Qp= ( U2+ pV2 ) - ( U1+pV1)
якщо прийняти, що U+pV=H - ентальпія, то
Qp= H2-H1= H
Ентальпія - це функція стану, що чисельно рівна сумі внутрішньої енергії системи та роботи по зміні об’єму системи. Ця величина чисельно характеризує міру перетворення енергії в хімічних реакціях в тепло (тепловміст). Для кожної конкретної речовини значення Н при стандартних умовах Н298 має важливе значення.
Конкретні значення Н298 розраховані і надані у «Довіднику з хімії», що дозволяє оцінити, яка енергія пішла на утворення даної речовини ( Н має від’ємне значення), чи виділилась, коли Н має додатнє значення. Зміна ентальпії системи не залежить від шляху процесу, а лише від її початкового і кінцевого стану, що дозволяє розраховувати Н реакції: Н р-ції= Σ Нкінц.прод.- Σ Нвих.прод. з врахуванням стехіометричних коефіцієнтів.
Це випливає із наслідку відомого закону Гесса, який дозволяє реально визначити на практиці тепловий ефект, що визначається початковим і кінцевим енергетичним станом речовини і не залежить від шляхів переходу або проміжних стадій реакцій.
Одним із наслідків закону Гесса є те, що
Н298 утв= - Н298 згор
а це значить, що Q= - Нутв , Q.>0 якщо Н<0, а отже можна розрахувати теплові ефекти тих стадій хімічних і біохімічних реакцій, які експериментально визначити неможливо.
Харчові продукти виділяють таку ж кількість енергії, як і при спалюванні їх у калориметрі. Так при біологічному окислені виділяється:
1г білків 17,6 кДж