
- •Техніка безпеки при роботі в лабораторії.
- •Перша допомога.
- •Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
- •Вміст у організмі та значення для організму макроелементів
- •Якісна реакція на катіони лужних металів - фарбування полум'я в наступні кольори:
- •Загальні хімічні властивості
- •Біологічна роль та застосування в медицині s та р – елементів
- •Заняття №1 Тема: Біогенні s-елементи; біологічна роль, застосування в медицині.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Заняття №2
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •3.Фізичні властивості :
- •4. Хімічні властивості d-елементів і їх сполук виходячи з будови атомів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання:
- •Приклад завдань для тестового контролю:
- •Методика виконання лабораторної роботи
- •Розділ 3 Комплексні сполуки
- •Класифікація та номенклатура комплексних сполук
- •Хімічний зв’язок у комплексних сполуках
- •Заняття №4
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання лабораторної роботи
- •Розділ 4 Вчення про розчини. Кислотно-основна рівновага біологічних рідин в організмі
- •Приклади розв’язування задач за темою «Розчини»
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 5. Розчини електролітів
- •Слабкі електроліти.
- •Сильні електроліти.
- •Теорія кислот і основ.
- •Дисоціація води.
- •Гідроліз солей. Ступінь та константа гідролізу
- •Буферні розчини.
- •Біохімічні буферні системи.
- •Самостійна позааудиторна робота студентів.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Відповідно, визначивши експериментальну різницю в температурах кипіння розчину і чистого розчинника
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 7
- •Основні поняття:
- •1Г вуглеводів 19,6 кДж
- •Хімічний склад і калорійність харчових продуктів
- •Задача 3
- •Задача 4
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Різниця цих рівнянь і дасть рівняння утворення кристалогідрату
- •Розділ 8. Хімічна кінетика
- •Залежність швидкості реакції від різних факторів.
- •Теорія активних комплексів.
- •Теорії каталізу
- •Ферментативний каталіз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9
- •Гальваноз.
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •1 Правило: Кристалічну гратку адсорбенту добудовують ті йони, що входять до її складу, ізоморфні з її йонами, утворюють з йонами цієї гратки важкорозчинні сполуки.
- •2 Правило: На твердій поверхні адсорбенту адсорбуються тільки ті йони, знак заряду яких протилежний знаку заряду поверхні адсорбенту.
- •Типи хроматографії.
- •Залежність форми кривих поглинання від виду адсорбції.
- •Йонообмінна хроматографія. В основі лежить процес йонного обміну
- •Тонкошарова хроматографія
- •Радіальна хроматографія
- •Хроматографія на папері.
- •Газова хроматографія (гх).
- •Заняття№15
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Заняття 16
- •Контрольні питання.
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 9 Дисперсні системи
- •Класифікація за ступенем дисперсності подідяють:
- •Класифікація дисперсних систем за агрегатним станом
- •Молекулярно-кінетичні властивості колоїдних систем
- •Оптичні властивості колоїдних систем.
- •Явища, що супроводжують коагуляцію.
- •Коагуляція в біологічних системах.
- •Самостійна позааудиторна робота студентів
- •Контрольні питання.
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Самостійна позааудиторна робота студентів
- •Контрольні питання
- •Приклад завдань для тестового контролю:
- •Самостійна робота на занятті.
- •Методика виконання роботи
- •Розділ 10 Розділ 9. Високомолекулярні сполуки
- •Контрольні питання.
- •Самостійна робота на занятті
- •Методика виконання роботи
- •Розділ 11 класифікація і номенклатура органічних сполук. Реакційна здатність алканів, алкенів, аренів.
- •Теорія будови органічних сполук а.М. Бутлерова:
- •Класифікація органічних сполук
- •Основні класи органічних сполук
- •Номенклатура органічних сполук
- •Класифікація реакцій в органічній хімії
- •Насичені вуглеводні (алкани)
- •Гомологічний ряд алканів
- •Будова молекули Метану
- •Ізомерія
- •Фізичні властивості
- •Хімічні властивості
- •Ненасичені вуглеводні (Алкени, алкадієни, алкіни)
- •Алкени. Гомологічний ряд алкенів.
- •Електронна будова подвійного зв’язку
- • Подвійний зв’язок – це ковалентний зв’язок, який складається з одного - і одного π-зв’язку. Подвійному зв’язку відповідає sp2- гібридизація. Ізомерія
- •Одержання
- •Фізичні властивості
- •Хімічні властивості
- •Алкадієни.
- •Хімічні властивості алкадієнів
- •Електронна будова потрійного зв’язку
- • Потрійний зв’язок – це ковалентний зв’язок, який складається з одного - і двох π- звязків. Потрійному зв’язку відповідає sp гібридизація. Фізичні властивості алкінів
- •Хімічні властивості
- •I. Реакції приєднання:
- •Ароматичні вуглеводні (арени)
- •Будова молекули бензолу (бензену)
- •Гомологи бензолу. Ізомерія. Гомологи бензолу можна розглядати як похідні бензолу, в яких один або декілька атомів вуглецю заміщені різними вуглеводневими радикалами.
- •Фізичні властивості
- •Хімічні властивості
- •І. Реакції заміщення:
- •1) Галогенування
- •1) Гідрування:
- •2) Галогенування
- •Правила орієнтації в бензольному ядрі
- •Заняття 21
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Заняття №22.
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Розділ 12 оксигенвмісні органічні сполуки
- •Спирти.
- •Одноатомні спирти
- •Гомологічний ряд спиртів
- •Фізичні властивості
- •Заняття 23
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Самостійна робота на занятті.
- •Одержання
- •Гідратація алкінів: Хімічні властивості
- •1) Реакції приєднання
- •2) Реакція відновлення:
- •4) Реакції полімеризації:
- •Реакції поліконденсації
- •Застосування
- •Заняття 24
- •Самостійна позааудиторна робота
- •Контрольні питання
- •Номенклатура
- •Ізомерія карбонових кислот
- •Одержання
- •3) Промисловий синтез оцтової кислоти:
- •Хімічні властивості
- •Застосування
- •Дикарбоновимі кислотами називають похідні вуглеводнів, які містять в своєму складі дві карбоксильні групи.
- •Естери (складні ефіри) – це сполуки, що складаються із залишку карбонової кислоти і спирту.
- •Номенклатура
- •Види ізомерії
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •Застосування
- •Ліпіди (жири)
- •Класифікація
- •Номенклатура
- •Одержання
- •Перший синтез жиру здійснив Бертло (1854 р.) при нагріванні гліцерину і стеаринової кислоти:
- •Хімічні властивості
- •Застосування
- •Біологічна роль (функції) жирів у людському організмі
- •Заняття 25.
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Методика виконання роботи
- •Розділ 15 дослідження хімічних властивостей моно- і полісахаридів.
- •Значення
- •Моносахариди. Будова. Ізомерія
- •Класифікація
- •Генетичний d- ряд сахаридів
- •Формули хеуорса
- •Фізичні властивості
- •Одержання
- •Хімічні властивості
- •I. Реакції по карбонільній групі
- •1. Окиснення (для альдегідів)– призводить до утворення відповідних кислот.
- •2. Ацилювання (утворення складних ефірів).
- •III. Специфічні реакції
- •Класифікація і номенклатура
- •Застосування
- •Полісахариди
- •Крохмаль Будова молекули (розгалужений ланцюг)
- •Фізичні властивості
- •Хімічні властивості
- •Знаходження в природі
- •Застосування
- •Целюлоза (клітковина) Будова молекули (лінійний ланцюг)
- •Знаходження в природі
- •Застосування
- •Заняття № 26
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Література:
- •Самостійна позааудиторна робота
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Розділ 16 дослідження реакційної здатності гетерофункціональних сполук. Амінокислоти
- •Найважливіші представники гідроксикислот.
- •Амінокислоти
- •Класифікація амінокислот.
- •Класифікація α-амінокислот
- •Ізомерія
- •Фізичні властивості
- •Одержання амінокислот
- •Хімічні властивості
- •Біполярний йон
- •Пептиди. Білки
- •Склад і будова молекули
- •Поширення в природі
- •Хімічні властивості
- •Заняття 28
- •Самостійна позааудиторна робота:
- •Контрольні питання.
- •Самостійна аудиторна робота.
- •Заняття 29 Тема: α-Амінокислоти, пептиди, білки.
- •3. Конкретні цілі,вміти:
- •Самостійна робота на занятті..
- •Гетероциклічні сполуки Класифікація гетероциклів
- •Номенклатура гетероциклічних сполук
- •П’ятичленні гетероцикли з одним гетероатомом
- •П’ятичленні гетероцикли з двома гетероатомами
- •Шестичленні гетероцикли Властивості і реакції шестичленних гетероциклічних сполук
- •2 Окиснення піридину і алкілпіридинів
- •Шестичленні гетероциклічні сполуки з двома гетероатомами
- •Біциклічні гетероцикли
- •Розділ 18 нуклеїнові кислоти
- •Рибонуклеїнові (рнк) і дезоксирибонуклеїнові (днк) кислоти.
Техніка безпеки при роботі в лабораторії.
Під час виконання дослідів в учбовому класі підтримувати дисципліну і порядок.
Для дослідів використовувати реактиви тільки в невеликій кількості згідно методики.
Не пробувати на смак ніяких речовин, і не приймати їжі в хімічній лабораторії.
Не нахилятись над посудом, в якому щось кипить або який заповнюється рідиною.
Обережно нюхати речовини: пару речовин слід спрямовувати до носа помахом кисті руки.
Пробірку в якій нагрівається рідина, йде хімічна реакція, тримати отвором убік від себе і від інших працюючих; не заглядати в неї, щоб бризки рідини не попали в очі.
При нагріванні пробірку необхідно обертати і час від часу обережно збовтувати її вміст для рівномірного нагріву.
Всі роботи з легкозаймистими речовинами необхідно виконувати подалі від відкритого вогню, краще під витяжною шафою.
Будьте обережні при роботі з концентрованими кислотами і лугами. При попаданні на шкіру або одяг кислот чи лугів необхідно негайно змити їх великою кількістю води, а потім 3% розчином соди (при попаданні кислоти) або 1-2% розчином оцтової кислоти (при попаданні лугу)
Не використовувати для дослідів реактиви, які зберігаються у посуді без етикеток.
Заборонено зливати ефіри, жири, концентровані кислоти у раковину.
У випадку займання горючих рідин у пробірці – не кидайте її, а закривайте швидко отвір пробірки будь-чим, що є під руками.
Перша допомога.
При термічних опіках необхідно швидко охолодити обпечене місце і продезинфікувати його спиртом.
При опіках кислотами, спочатку добре промити обпечене місце водою, а потім розчином соди.
При опіках лугами необхідно промити обпечене місце водою, а потім 1-2% розчином оцтової кислоти.
При всіх випадках опіків або отруєнь після надання першої допомоги, потерпілого необхідно відправити у поліклініку.
Розділ і Біогенні s- та р-елементи, біологічна роль, застосування в медицині
Живі організми містять майже всі відомі у природі хімічні елементи, одні з них виявлено, як обов׳язкові в усіх без винятку організмах, інші – властиві тільки окремим видам і тому трапляються рідко. У живих організмах у найбільшій кількості присутні 4 елементи: Оксиген, Карбон, Гідроген, Нітроген. Це так звані елементи-органогени (на їхню частину припадає майже 98% хімічного вмісту організму). Наступну групу складають макроелементи ( 0,01% і більше) – Фосфор, Калій, Сульфур, Хлор, Кальцій, Залізо, сумарна частка яких становить до 1,9%. Інші хімічні елементи (понад 50) належать до мікроелементів (10-3 – 10-5%) (Йод, Кобальт, Манган, Купрум, Молібден, Цинк). Ще менше в організмі ультрамікроелементів (менше 10-5%) (Плюмбуму, Брому, Срібла, Золота тощо). Усі хімічні елементи, що містяться в організмі входять до складу органічних і неорганічних сполук або перебувають у вигляді іонів.
Вміст у організмі та значення для організму макроелементів
Елемент |
Вміст маси організмі, % |
Значення |
Фосфор (Р) |
0,2-1,0 |
Входить до складу кісток, білків, нуклеїнових кислот, АТФ. |
Калій (К) Натрій (Na) |
0,15-0,4 |
Основні позитивно заряджені іони в організмі. |
Сірка (сульфур, S) |
0,15-0,2 |
Входить до складу білків та інших біомолекул. |
Хлор (Cl) |
0,05-0,1 |
Негативно заряджений іон в організмі. |
Кальцій (Са) |
0,04-2,0 |
Основний компонент кісток і черепашок, бере участь у реалізації метаболічних процесів. |
Магній (Mg) |
0,02-0,03 |
Активує діяльність ферментів, структурний компонент хлорофілу. |
Залізо (Ферум, Fe) |
0,01-0,015 |
Входить до складу багатьох біомолекул у тому числі гемоглобіну. |
В періодичній системі елементів за будовою електронної оболонки атома хімічні елементи можна розділити на s-, p-, d- чи f-елементи.
s-ЕЛЕМЕНТИ
Біометали з родини s-елементів знаходяться у верхній лівій частині періодичної системи у головних підгрупах І і ІІ групи і належать до неперехідних елементів. Вони постійно містяться в макрокількостях в організмі людини і тварини і є життєво необхідними.
Спільні властивості – наявність на зовнішньому рівні 1 чи 2-х електронів. Загальни електронна формула зовнішнього енергетичного рівня ns1 або ns2. Де n – номер енергетичного рівня.
Головна підгрупа першої групи періодичної системи включає елементи Літій, Натрій, Калій, Рубідій і Цезій, а також дуже нестабільний елемент Францій. Останній зустрічається в ряду радіоактивного розпаду актинію. Всі ці елементи об’єднують під спільною назвою лужні метали, так як гідроксиди двох головних представників цієї групи – натрію і калію – здавна були відомі під назвою лугів.
У зовнішньому електронному шарі атоми лужних металів мають по одному електрону. Маючи у зовнішньому електронному шарі лише по одному електрону, який перебуває на порівняно великій відстані від ядра, атоми цих елементів досить легко віддають цей електрон, тобто характеризуються низькою енергією іонізації. Однозарядні позитивні іони, що при цьому утворюються, мають стійку електронну структуру відповідного інертного газу (іон Li – структуру атома Гелію, іон Натрію – атома Неону, іон Калію – атома Аргону). Легкість віддавання зовнішніх електронів характеризує розглядувані елементи як найтиповіші представники металів: металічні властивості у лужних металів виявлені особливо різко.
Збільшення заряду ядра і загального числа електронів в атомах при переході згори вниз по підгрупі створює деякі відмінності в їхніх властивостях: більш легке віддавання валентних електронів і посилення металічних властивостей із збільшенням порядкового номера.
У вигляді простих речовин лужні метали – це сріблясто-білі метали (за виключенням Cs – золотисто-жовтий) з об’ємно-центрованою кристалічною решіткою.
Лужні метали володіють найбільш вираженою електропозитивністю. Правило, що електропозитивний характер елементів, тобто намагання перейти в електропозитивний стан, всередині однієї і тої ж головної підгрупи періодичної системи збільшується із зростанням атомної маси, чітко проглядається у лужних металів.
До s – елементів ІІ групи належать типові елементи – Берилій, Магній, Кальцій, Стронцій, Барій, Радій. У відповідності з будовою валентного електронного шару s елементи ІІ групи проявляють ступінь окиснення +2. Як і в інших головних підгрупах, в ряду розглянутих елементів із збільшенням порядкового номера енергія іонізації атомів зменшується, радіуси атомів та іонів збільшуються, металічні властивості хімічних елементів посилюються.
За головними представниками цієї підгрупи – Кальцієм, Стронцієм і Барієм, - відомих під загальною назвою лужноземельних металів, вся головна підгрупа другої групи називається також підгрупою лужноземельних металів.
Назву “лужноземельні” ці метали (інколи до них приєднують і Магній) отримали тому, що їх оксиди за своїми хімічними властивостями є проміжними між лугами (тобто оксидами і гідроксидами лужних металів) і “землями” (тобто оксидами таких елементів, типовим представником яких є Алюміній – головна складова частина глин). Внаслідок цього перехідного положення оксидам Кальцію, Стронцію і Барію і дали назву “лужні землі”.
Перший елемент цієї підгрупи, Берилій (якщо не брати до уваги його валентність), за своїми властивостями набагато ближчий до Алюмінію, ніж до нищих аналогів своєї підгрупи. Другий елемент цієї підгрупи, Магній, також в окремих відношеннях значно відрізняється від лужноземельних металів у вузькому значенні цього терміну. Деякі окремі реакції зближують його з елементами побічної підгрупи другої групи, особливо з Цинком (так сульфати магнію і цинку MgSO4 i ZnSO4 на противагу сульфатам лужноземельних металів легкорозчинні, ізоморфні один одному і утворюють аналогічні по складу подвійні солі).
Отже, як і було вже зазначено нами при вивченні хімії елементів І групи головної підгрупи, перший елемент виявляє властивості, перехідні до наступної головної підгрупи, другий – до побічної підгрупи тої ж групи; і за звичай, характерними для групи властивостями володіє лише третій елемент. Це правило особливо наглядно виконується в групі лужноземельних металів.
За своєю твердістю метали головної підгрупи ІІ групи значно переважають лужні метали. Найбільш м’який з лужноземельних металів, Барій (властивості якого найбільш близькі до лужних металів), володіє приблизно твердістю свинцю.
Їх типова валентність ІІ (лише в виняткових випадках вони бувають одновалентними) заставляє віднести всі ці метали до головної підгрупи ІІ групи. Крім того всі вони виявляють сильно електропозитивний характер, який визначається їх положення в лівій частині електрохімічного ряду напруг, а також сильною спорідненістю до електронегативних елементів.
Всі метали розкладають воду. Однак дія Берилію і Магнію на воду протікає дуже повільно внаслідок малої розчинності гідридів, які утворюються в результаті цієї реакції. Наприклад для Магнію:
Mg + 2H2O = Mg(OH)2 + H2
Гіроксиди магнію і берилію, утворившись на поверхні металів Be і Mg, закривають металічну поверхню від доступу води. Тому навіть маленькі шматки стружки магнію необхідно витримати при кімнатній температурі в контакті з водою протягом декількох діб, перш ніж вони перетворяться в гідроксид магнію. Інші лужноземельні метали реагують з водою значно енергійніше, що пояснюється кращою розчинністю їх гідроксидів.
ХІМІЧНІ ВЛАСТИВОСТІ АКТИВНИХ МЕТАЛІВ:
Взаємодія з неметалами:
4Na + O2 →2Na2O
2Ca + O2 →2CaO
Взаємодія з H2O:
2Na + 2H2O → 2NaOH + H2↑
Взаємодія з кислотами:
2K + 2HCl → 2KCl + H2↑
Взаємодіють зі спиртами і галогенопохідними вуглеводнів.
2С2Н5ОН + 2Na 2С2Н5ОNa + Н2