- •1.Предмет теоретичної механіки.
- •3.Основні поняття теоретичної механіки . Аксіоми в’язей.
- •4. Поняття про системи сил,врівноважуючі та еквівалентні сили
- •5. Рівнодіюча система сил.Приклади.
- •6. Поняття про матеріальну точку,абсолютно тверде тіло.Приклади
- •7. Моделювання в механіці. Розрахункові схеми.
- •8. Основні положення статики
- •9.Предмет і задачі статики. Приклади.
- •10. Аксіоми статики та приклади їх застосування.
- •11. Наслідки з аксіом статики.
- •12.Основні вязі та реакції. Креслення,реакції.
- •13.Різновиди простого дотику тіл
- •14. Циліндричний і сферичний шарнір. Креслення,реакції.
- •15.Особливості в'язі «підп'ятник» Креслення,реакції.
- •16. Ідеальні в'язі та їх властивості. Приклади.
- •17. Плоска система збіжних сил. Паралелограм та трикутник сил.
- •18.Розкладення сили на дві складові
- •19. Складання двох сил, що докладені у точці тіла
- •20.Складання кількох сил, що збігаються в точці і лежать в одній площині
- •21. Геометричні та аналітичні умови рівноваги системи збіжних сил
- •22. Стрижневі системи з ідеальними шарнірами
- •23.Момент пари сил. Властивості пар
- •24. Теорія пар сил на площині
- •25.Еквівалентність пар сил. Складання пар сил.
- •26. Умови рівноваги пар сил
- •27. Момент сили відносно точки
- •28. Плоска система довільно розміщених сил
- •29. Приведення сили до точки
- •30. Приведення до точки плоскої системи довільно розміщених сил
- •31. Теорема Варіньйона
- •32. Випадки приведення плоскої системи сил до точки
- •33. Складання плоскої системи паралельних сил
- •Умови рівноваги плоскої системи довільних сил.
- •Умови рівноваги плоскої системи паралельних сил.
- •Балочні системи. Різновиди опор та види навантажень.
- •37. Предмет кінематики. Основні поняття. Приклади.
- •38Природний спосіб подання точки в кінематиці.
- •39Визначення швидкості та прискорення при природному поданні руху точки.
- •40Нормальне та тангенційне прискорення точки.
- •Координатний спосіб подання руху точки. Рівняння руху
- •Траєкторія, швидкість та прискорення при координатному способі подання руху точки.
- •43Предмет та основні поняття динаміки
- •44Перша та друга аксіоми динаміки.
- •45. Третя та четверта аксіоми динаміки.
- •III Аксіома (Закон незалежності дії сил)
- •IV Аксіома (Закон рівності дії та протидії)
- •46. Вільна та невільна точки в динаміці.
- •47. Рівняння руху матеріальної точки в Декартовій системі координат.
- •48. Диференційні рівняння руху матеріальної точки.
- •49. Диференційні рівняння руху матеріальної точки в природних вісях.
- •50. Перша основна задача динаміки.
- •51. Друга основна задача динаміки.
- •52. Сили інерції. Принцип Даламбера.
- •53. Робота та потужність.
- •54. Основні теореми динаміки точки та системи.
25.Еквівалентність пар сил. Складання пар сил.
Т
еорема.
Система пар, що діють на тіло в одній
площині, еквівалентна парі сил з моментом,
рівним алгебраїчній сумі моментів пар
системи.
Припустимо,
на тіло діють три пари (рис. а), моменти
яких
,
,.
,
відомі. Кожну із заданих пар замінимо
еквівалентної парою відповідно
,
,
,
але з однаковими плечима
,
т. e.
,
,
Та розташуємо ці пари так, щоб їх сили
діяли уздовж двох паралельних прямих
(мал. б).
Як
відомо, рівнодіюча сил, що діють уздовж
однієї прямої, спрямована по тій же
прямій і модуль її дорівнює алгебраїчній
сумі складових сил. Тому, склавши сили,
прикладені до точок
і до точок
отримаємо рівнодіючу пару
,
еквівалентну трьом заданим парам (рис.
в). При цьому.
Момент
рівнодійної пари,
а
так як
,
то
або
.
Теорема доведена.
Поширюючи
рівність
на
будь-яке число пар, що діють на тіло,
можемо записати
Отже, для того щоб скласти будь-яке число пар, що діють на тіло в одній площині, досить алгебраїчно скласти моменти цих пар. Отриманий в результаті складання момент і визначає рівнодіючу пару сил.
Якщо
в результаті складання пар
,
то діючі на тіло пари утворюють
врівноважену систему. Отже, необхідна
і достатня умова рівноваги системи пар
виражається одним рівнянням
,тобто
для рівноваги системи пар сил, що діють
на тіло в одній площині, необхідно і
достатньо, щоб алгебраїчна сума їх
моментів дорівнювала нулю.
Значить, систему пар або одну пару можна врівноважити тільки парою.
26. Умови рівноваги пар сил
Плоска система пар, що лежить в одній площині або в паралельних площинах, еквівалентна одній рівнодіючій парі, момент якої дорівнює алгебраїчній сумі моментів пар, що складаються:
Враховуючи, що систему діючих на тіло пар сил завжди можна замінити однією еквівалентною парою сил, для рівноваги системи пар необхідно і достатньо, щоб момент результуючої пари сил дорівнював нулю. Тоді, відповідно до формули одержимо умову рівноваги системи пар:
.
Проеціюючи векторне рівняння на координатні осі, одержимо три алгебраїчних рівняння умов рівноваги системи пари сил:
;
;
.
Для системи пар сил, що лежать в одній площині, необхідно і достатньо, щоб алгебраїчна сума моментів цих пар дорівнювала нулю.
27. Момент сили відносно точки
Векторним моментом сили відносно точки називається векторний добуток радіуса-вектора проведеного із точки відносно якої обчислюється момент на вектор сили, тобто (рис. 20)
.
Плечем сили відносно точки називається довжина перпендикуляра, опущеного із точки відносно якої обчислюється момент на лінію дії сили.
Або іншими словами можна сказати: векторним моментом сили відносно точки називається вектор модуль якого дорівнює добутку модуля сили на плече. Цей вектор перпендикулярний до площини у якій лежать вектор сили і точка відносно якої обчислюється момент і напрямлений у такий бік, якщо дивитися з його кінця, то видно намагання сили повернути тіло проти ходу стрілки годинника.
Властивості векторного момента сили відносно точки
1) векторний момент сили відносно точки не змінюється при переносі точки прикладання сили уздовж її лінії дії;
2) векторний момент сили відносно точки дорівнює нулеві, якщо лінія дії сили проходить через точку, відносно якої обчислюється момент (плече дорівнює нулеві).
Якщо розглядається плоска система сил то вводиться поняття алгебраїчного момента сили відносно точки.
Алгебраїчним моментом сили відносно точки називається взятий з відповідним знаком добуток модуля сили на плече. Знак плюс береться у тому випадку якщо сила намагається повернути тіло відносно даної точки проти ходу стрілки годинника.
