
- •Jak korzystać z książki?
- •Rozdział I klasyczny rachunek zdań.
- •1.1. Schematy zdań.
- •1.1.1. Łyk teorii.
- •1.1.2. Praktyka: budowaNie schematÓw zdań języka naturalnego.
- •1.1.3. Utrudnienia I pułapki.
- •W arto zapamiętać!
- •1.1.4. Często zadawane pytania.
- •1.2. Tabelki zero-jedynkowe I ich zastosowanie.
- •1.2.1. Łyk teorii.
- •Koniunkcja
- •Alternatywa
- •Implikacja
- •Równoważność
- •1.2.2. Praktyka: zastosowanie tabelek.
- •1.3. Tautologie I kontrtautologie.
- •1 .3.1. Łyk teorii.
- •1.3.2. Praktyka: sprawdzanie statusu formuł.
- •1.4. Skrócona metoda zerojedynkowa.
- •1 .4.1. Łyk teorii.
- •Ogólna idea metody skróconej.
- •1.4.2. Praktyka: wykorzystanie metody skróconej.
- •1.4.3. Utrudnienia I pułapki.
- •Dwie możliwości od samego początku.
- •1.4.4. Kontrtautologie.
- •1 .4.5. Często zadawane pytania.
- •1.5. Prawda logiczna I zdania wewnętrznie sprzeczne.
- •1 .5.1. Łyk teorii.
- •1.5.2. Praktyka: sprawdzanie, czy zdanie jest prawdą logiczną lub fałszem logicznym.
- •1.6. Wynikanie logiczne.
- •1 .6.1. Łyk teorii.
- •1.6.2. Praktyka: sprawdzanie, czy z jednego zdania wynika drugie.
- •1.6.3. Wykorzystanie pojęcia tautologii.
- •1.7. Wnioskowania.
- •1 .7.1. Łyk teorii.
- •1.7.2. Praktyka: sprawdzanie poprawności wnioskowań.
- •1.7.3. Wykorzystanie pojęcia tautologii.
- •1 .7.4. Często zadawane pytania. Czym wnioskowanie różni się od wynikania?
- •Rozdział II sylogistyka.
- •2.1. Schematy zdań.
- •2.1.1. Łyk teorii.
- •2.1.2. Praktyka: zapisywanie schematów zdań.
- •2.1.3. Utrudnienia I pułapki.
- •2.1.4. Często zadawanie pytania.
- •2.2. Sprawdzanie poprawności sylogizmów metodą diagramów venna.
- •2.2.1. Łyk teorii.
- •2.2.2. Praktyka: zastosowanie diagramów venna.
- •2.2.3. Utrudnienia I pułapki.
- •2 .2.4. Często zadawane pytania.
- •2.3. Sprawdzanie poprawności sylogizmów przy pomocy metody 5 reguł.
- •2.3.1. Łyk teorii.
- •2.3.2. Praktyka: zastosowani metody 5 reguł.
- •2.4. Kwadrat logiczny.
- •2 .4.1. Łyk teorii.
- •2.4.2. Praktyka: wykorzystanie kwadratu logicznego.
- •2.5. Inne prawa wnioskowania bezpośredniego.
- •2.5.1. Łyk teorii.
- •2.5.2. Praktyka: zastosowanie praw wnioskowania bezpośredniego.
- •Klasyczny rachunek predykatów.
- •3.1. Schematy zdań.
- •I znowu „tylko”...
- •3.3. Tautologie I kontrtautologie.
- •3.4. Reguły w rachunku predykatów.
- •3.4.2. Praktyka: wykazywanie zawodności reguł.
- •Słowniczek
- •Rozdział IV nazwy I definicje.
- •4.1. Nazwy I ich rodzaje.
- •4.1.1. Łyk teorii.
- •1. Podział ze względu na ilość desygnatów.
- •2. Podział ze względu na sposób istnienia desygnatów.
- •3. Podział ze względu na sposób wskazywania desygnatów.
- •4. Podział ze względu na jednoznaczność (ostrość) zakresu.
- •4.1.2. Praktyka: Klasyfikowanie nazw.
- •4 .1.3. Utrudnienia I pułapki.
- •4.2. Stosunki między nazwami.
- •4.2.1. Łyk teorii.
- •4.2.2. Praktyka: Sprawdzanie zależności między nazwami.
- •4.2.3. Praktyka: zastosowanie diagramów venna.
- •4.2.4. Praktyka: Dobieranie innych nazw do nazwy podanej.
- •4.3. Definicje.
- •4.3.1. Łyk teorii.
- •4.3.2. Praktyka: Badanie poprawności definicji sprawozdawczych.
- •4.3.3. Utrudnienia I pułapki.
- •Rozdział V zbiory.
- •5.1. Podstawowe wiadomości o zbiorach.
- •5.1.1. Łyk teorii.
- •5.2. Stosunki między zbiorami.
- •5.2.1. Łyk teorii.
- •Identyczność.
- •Inkluzja (zawieranie się zbiorów).
- •5.2.2. Praktyka: określanie zależności między zbiorami.
- •5.2.3. Utrudnienia I pułapki.
- •5.3. Działania na zbiorach.
- •5.3.1. Łyk teorii.
- •Iloczyn.
- •5.3.2. Praktyka: wykonywanie działań na zbiorach.
- •5.4. Prawa rachunku zbiorów typu bezzałożeniowego.
- •5.4.1. Łyk teorii.
- •5.4.2. Praktyka: wykrywanie praw rachunku zbiorów przy pomocy rachunku zdań.
- •5.5 Założeniowe prawa rachunku zbiorów.
- •5 .5.1. Łyk teorii.
- •5.5.2. Praktyka: sprawdzanie praw teorii zbiorów przy pomocy diagramów venna.
- •5 .5.3. Utrudnienia I pułapki.
- •Rozdział VI relacje.
- •6.1. Co to jest relacja.
- •Iloczyn kartezjański.
- •6.2. Dziedziny I pole relacji.
- •6.2.1. Łyk teorii.
- •6.2.2. Praktyka: określanie dziedzin I pola relacji.
- •6.3. Własności formalne relacji.
- •6.3.1. Łyk teorii.
- •6.4. Działania na relacjach.
- •6.5. Zależności między relacjami.
- •6.5.3. Praktyka: dobieranie relacji będących w różnych stosunkach do podanej.
5.2. Stosunki między zbiorami.
5.2.1. Łyk teorii.
Z biory mogą pozostawać względem siebie w różnych zależnościach.
Identyczność.
Mówimy, że dwa zbiory są sobie równe lub że są identyczne, gdy mają dokładnie te same elementy. Identyczność dwóch zbiorów oznaczamy symbolem: =. Posługując się znanymi z rachunku zdań i predykatów symbolami, możemy identyczność zbiorów zdefiniować:
A = B x (x A x B)
(To, że A i B są równe, oznacza, że dla każdego x to, że x należy do A jest równoważne temu, że x należy do B)
Przykładowo identyczne są zbiory A – zbiór liczb parzystych oraz B – zbiór liczb podzielnych przez 2. Równe są też zbiory A = {a, b, c, d} i B = {b, d, c, a}.
Inkluzja (zawieranie się zbiorów).
Mówimy, że zbiór A zawiera się w zbiorze B (A pozostaje w stosunku inkluzji do B), gdy każdy element A jest jednocześnie elementem B (choć niekoniecznie na odwrót). Inkluzję oznaczamy symbolem: . Zawieranie się zbiorów możemy przedstawić wzorem:
A B x (x A x B)
Inkluzja zachodzi na przykład pomiędzy zbiorami: A = {a, b}, B = {a, b, c, d} lub A – zbiór krokodyli, B – zbiór gadów.
Jeśli zbiór A zawiera się w zbiorze B, to możemy też powiedzieć, że A jest podzbiorem B.
Rozłączność.
Zbiory A i B są rozłączne, gdy nie mają żadnego elementu wspólnego. Rozłączność oznaczamy: )(. Symbolicznie:
A )( B x (x A x B) lub ~ x (x A x B)
Przykładowo, rozłączne są zbiory A = {a, b, c} i B = {d, e} lub A – zbiór ssaków, B – zbiór płazów.
Krzyżowanie.
Zbiory się krzyżują gdy mają one pewne elementy wspólne, ale oprócz nich w każdym zbiorze znajdują się również takie obiekty, których nie ma w drugim. Krzyżowanie zbiorów oznaczamy najczęściej przy pomocy dwóch zazębiających się nawiasów, jednakże z przyczyn technicznych (brak takiego symbolu w edytorze tekstu) będziemy na oznaczenie krzyżowania używali obecnie znaku: #. Symbolicznie krzyżowanie zbiorów definiujemy:
A # B x (x A x B) x (x A x B) x (x A x B)
Krzyżują się na przykład zbiory: A = {a, b, c, d} i B = {a, b, e} lub A – zbiór ssaków, B – zbiór drapieżników (istnieją ssaki będące drapieżnikami, ale też ssaki nie będące drapieżnikami oraz drapieżniki nie będące ssakami).
Odnośnie przedstawionych zależności pomiędzy zbiorami dobrze jest zauważyć, że stosunki identyczności, rozłączności oraz krzyżowania się zbiorów są symetryczne. Oznacza to, że jeśli taka zależność zachodzi „w jedną stronę”, to zachodzi również „w drugą”. Jeśli A = B, to również B = A, jeśli A )( B, to również B )( A, a jeśli A # B, to również B # A. A zatem w przypadku tych stosunków nie jest istotna kolejność, w jakiej wypiszemy pozostające w nich zbiory. Inaczej ma się sytuacja w przypadku inkluzji. Tu fakt, że A B, nie oznacza, że B A.
Zależności między zbiorami można przedstawić graficznie:
A
B
B
A
Identyczność (A = B) Inkluzja (A B)
A
B
A
B
Rozłączność (A )( B) Krzyżowanie (A # B)