
- •Jak korzystać z książki?
- •Rozdział I klasyczny rachunek zdań.
- •1.1. Schematy zdań.
- •1.1.1. Łyk teorii.
- •1.1.2. Praktyka: budowaNie schematÓw zdań języka naturalnego.
- •1.1.3. Utrudnienia I pułapki.
- •W arto zapamiętać!
- •1.1.4. Często zadawane pytania.
- •1.2. Tabelki zero-jedynkowe I ich zastosowanie.
- •1.2.1. Łyk teorii.
- •Koniunkcja
- •Alternatywa
- •Implikacja
- •Równoważność
- •1.2.2. Praktyka: zastosowanie tabelek.
- •1.3. Tautologie I kontrtautologie.
- •1 .3.1. Łyk teorii.
- •1.3.2. Praktyka: sprawdzanie statusu formuł.
- •1.4. Skrócona metoda zerojedynkowa.
- •1 .4.1. Łyk teorii.
- •Ogólna idea metody skróconej.
- •1.4.2. Praktyka: wykorzystanie metody skróconej.
- •1.4.3. Utrudnienia I pułapki.
- •Dwie możliwości od samego początku.
- •1.4.4. Kontrtautologie.
- •1 .4.5. Często zadawane pytania.
- •1.5. Prawda logiczna I zdania wewnętrznie sprzeczne.
- •1 .5.1. Łyk teorii.
- •1.5.2. Praktyka: sprawdzanie, czy zdanie jest prawdą logiczną lub fałszem logicznym.
- •1.6. Wynikanie logiczne.
- •1 .6.1. Łyk teorii.
- •1.6.2. Praktyka: sprawdzanie, czy z jednego zdania wynika drugie.
- •1.6.3. Wykorzystanie pojęcia tautologii.
- •1.7. Wnioskowania.
- •1 .7.1. Łyk teorii.
- •1.7.2. Praktyka: sprawdzanie poprawności wnioskowań.
- •1.7.3. Wykorzystanie pojęcia tautologii.
- •1 .7.4. Często zadawane pytania. Czym wnioskowanie różni się od wynikania?
- •Rozdział II sylogistyka.
- •2.1. Schematy zdań.
- •2.1.1. Łyk teorii.
- •2.1.2. Praktyka: zapisywanie schematów zdań.
- •2.1.3. Utrudnienia I pułapki.
- •2.1.4. Często zadawanie pytania.
- •2.2. Sprawdzanie poprawności sylogizmów metodą diagramów venna.
- •2.2.1. Łyk teorii.
- •2.2.2. Praktyka: zastosowanie diagramów venna.
- •2.2.3. Utrudnienia I pułapki.
- •2 .2.4. Często zadawane pytania.
- •2.3. Sprawdzanie poprawności sylogizmów przy pomocy metody 5 reguł.
- •2.3.1. Łyk teorii.
- •2.3.2. Praktyka: zastosowani metody 5 reguł.
- •2.4. Kwadrat logiczny.
- •2 .4.1. Łyk teorii.
- •2.4.2. Praktyka: wykorzystanie kwadratu logicznego.
- •2.5. Inne prawa wnioskowania bezpośredniego.
- •2.5.1. Łyk teorii.
- •2.5.2. Praktyka: zastosowanie praw wnioskowania bezpośredniego.
- •Klasyczny rachunek predykatów.
- •3.1. Schematy zdań.
- •I znowu „tylko”...
- •3.3. Tautologie I kontrtautologie.
- •3.4. Reguły w rachunku predykatów.
- •3.4.2. Praktyka: wykazywanie zawodności reguł.
- •Słowniczek
- •Rozdział IV nazwy I definicje.
- •4.1. Nazwy I ich rodzaje.
- •4.1.1. Łyk teorii.
- •1. Podział ze względu na ilość desygnatów.
- •2. Podział ze względu na sposób istnienia desygnatów.
- •3. Podział ze względu na sposób wskazywania desygnatów.
- •4. Podział ze względu na jednoznaczność (ostrość) zakresu.
- •4.1.2. Praktyka: Klasyfikowanie nazw.
- •4 .1.3. Utrudnienia I pułapki.
- •4.2. Stosunki między nazwami.
- •4.2.1. Łyk teorii.
- •4.2.2. Praktyka: Sprawdzanie zależności między nazwami.
- •4.2.3. Praktyka: zastosowanie diagramów venna.
- •4.2.4. Praktyka: Dobieranie innych nazw do nazwy podanej.
- •4.3. Definicje.
- •4.3.1. Łyk teorii.
- •4.3.2. Praktyka: Badanie poprawności definicji sprawozdawczych.
- •4.3.3. Utrudnienia I pułapki.
- •Rozdział V zbiory.
- •5.1. Podstawowe wiadomości o zbiorach.
- •5.1.1. Łyk teorii.
- •5.2. Stosunki między zbiorami.
- •5.2.1. Łyk teorii.
- •Identyczność.
- •Inkluzja (zawieranie się zbiorów).
- •5.2.2. Praktyka: określanie zależności między zbiorami.
- •5.2.3. Utrudnienia I pułapki.
- •5.3. Działania na zbiorach.
- •5.3.1. Łyk teorii.
- •Iloczyn.
- •5.3.2. Praktyka: wykonywanie działań na zbiorach.
- •5.4. Prawa rachunku zbiorów typu bezzałożeniowego.
- •5.4.1. Łyk teorii.
- •5.4.2. Praktyka: wykrywanie praw rachunku zbiorów przy pomocy rachunku zdań.
- •5.5 Założeniowe prawa rachunku zbiorów.
- •5 .5.1. Łyk teorii.
- •5.5.2. Praktyka: sprawdzanie praw teorii zbiorów przy pomocy diagramów venna.
- •5 .5.3. Utrudnienia I pułapki.
- •Rozdział VI relacje.
- •6.1. Co to jest relacja.
- •Iloczyn kartezjański.
- •6.2. Dziedziny I pole relacji.
- •6.2.1. Łyk teorii.
- •6.2.2. Praktyka: określanie dziedzin I pola relacji.
- •6.3. Własności formalne relacji.
- •6.3.1. Łyk teorii.
- •6.4. Działania na relacjach.
- •6.5. Zależności między relacjami.
- •6.5.3. Praktyka: dobieranie relacji będących w różnych stosunkach do podanej.
3.4. Reguły w rachunku predykatów.
3.4.1. ŁYK TEORII.
W sposób podobny do tego, w jaki wykazywaliśmy, że dana formuła nie jest tautotologią lub kontrtautologią, można udowadniać zawodność reguł wnioskowania.
Jak pamiętamy z rachunku zdań, reguła jest to schemat wnioskowania – układ przynajmniej dwóch schematów, z których ostatni reprezentuje wniosek rozumowania, a poprzednie – przesłanki. Reguły będziemy zapisywać w ten sposób, że nad poziomą kreską będziemy umieszczać schematy przesłanek, natomiast pod kreską schemat wniosku.
Mówimy, że reguła jest dedukcyjna, a w związku z tym oparte na niej rozumowanie logicznie poprawne, jeśli nie jest możliwe, aby przesłanki stały się schematami zdań prawdziwych, a jednocześnie wniosek schematem zdania fałszywego.
Wykazanie, że dana reguła rachunku predykatów jest dedukcyjna, jest dość skomplikowane i, podobnie jak wykazywaniem, że formuła KRP jest tautologią bądź kontrtautologią, nie będziemy się tym obecnie zajmować. Ograniczymy się do, o wiele prostszego, udowadniania, że dana reguła nie jest dedukcyjna (czyli, mówiąc inaczej, jest zawodna).
Ponieważ to, czy formuły rachunku predykatów reprezentują zdania fałszywe czy prawdziwe, zależy od struktury, w której formuły te będziemy rozpatrywać, udowodnienie zawodności reguły polega na znalezieniu takiej struktury, w której wszystkie przesłanki staną się schematami zdań prawdziwych, a wniosek – schematem zdania fałszywego. W ten sposób wykazujemy, że możliwa jest sytuacja, aby przesłanki były prawdziwe, a wniosek fałszywy, a więc reguła jest zawodna – posługując się nią, możemy, wychodząc z prawdziwych przesłanek, dojść do fałszywego wniosku.
3.4.2. Praktyka: wykazywanie zawodności reguł.
W praktyce, udowadnianie zawodności reguł przebiega tak samo, jak wykazywanie że formuła nie jest tautologią lub kontrtatologią.
Przykład:
Wykażemy, że zawodna jest reguła:
~ x P(x)
————
x ~ P(x)
Jedyna przesłanka badanej reguły stwierdza, że nie każdy obiekt posiada własność P, natomiast jej wniosek głosi, iż żaden obiekt jej nie posiada. Zawodność powyższej reguły można wykazać budując strukturę U = U = zbiór ludzi, P(x) x jest Chińczykiem. W strukturze tej przesłanka stwierdza prawdziwie, iż nie każdy człowiek jest Chińczykiem, zaś wniosek, fałszywie, że żaden człowiek Chińczykiem nie jest.
▲
Przykład:
Wykażemy, że zawodna jest reguła:
x P(x), x Q(x)
———————
x (P(x) Q(x))
Pierwsza przesłanka reguły stwierdza, iż istnieje obiekt mający własność P, druga, że istnieje obiekt mający własność Q, natomiast wniosek, iż każdy obiekt ma przynajmniej jedną z tych własności. Zawodność reguły możemy wykazać budując strukturę:
U = U = zbiór studentów, P(x) x ma 5 z logiki, Q(x) x ma 4 z logiki
▲
Przykład:
Wykażemy, że zawodna jest reguła:
xy R(x,y)
——————
xy R(y,x)
Przesłanka powyższej reguły stwierdza, że każdy obiekt uniwersum pozostaje do czegoś w relacji R, natomiast wniosek, iż do każdego obiektu uniwersum coś pozostaje w R. Jako przykład struktury, w której przesłanka stanie się zdaniem prawdziwym, a wniosek fałszywym posłużyć może:
U1 = U = zbiór ludzi, R(x,y) x jest dzieckiem y
Prawdą jest bowiem, że każdy człowiek jest czyimś dzieckiem, fałszem natomiast, że każdy człowiek dziecko posiada.
▲