
- •Содержание
- •11. Электропроводки………………………………………………..99
- •12. Выбор площади сечения проводников……………………….110
- •Литература……………………………………………………...285
- •1. Общие понятия и определения.
- •1 Электроснабжение и электрические сети
- •2. Категории электроприемников и обеспечение надежности электроснабжения
- •3 Заземление и защитные меры безопасности
- •4 Электроустановки и электропомещения
- •Аппараты, помещения и персонал.
- •5 Станции и подстанции
- •2. Особенности эксплуатации и конструктивного исполненияэлектрического оборудования
- •2. Климатическое исполнение.
- •3. Категории размещения.
- •5. Уровни и виды взрывозащиты.
- •6. Конструктивное исполнение рудничного электрооборудования.
- •7. Категории применения аппаратов управления.
- •3. Опасность поражения электрическим током.
- •1. Действие электрического тока на организм человека.
- •3. Меры по защите от поражения током.
- •4. Защита от замыканий на землю.
- •При продолжительности воздействия тока t, с
- •2. Опасность поражения человека при растекании тока в земле.
- •4. Меры по защите от поражения электрическим током.
- •4. Защита от замыканий на землю.
- •Безопасность в сетях с изолированной и заземленной нейтралью
- •Сравнение условий электробезопасности в сетях с изолированной и заземленной нейтралью.
- •Сети с компенсированной нейтралью.
- •Некоторые выводы
- •4. Защитное заземление и зануление.
- •Р Нейтраль трансформатора заземлена (соединена с землей) исунок 4 - Применение 3-х проводной системы в однофазной сети и четырехпроводной с заземленной нейтралью (tn)
- •5. Контактные узлы коммутационных аппаратов. Устройства для гашения дуги.
- •Пальцевый
- •РСкользящий Герметизированный исунок 2 - Виды и типы контактов.
- •3.1. Медь
- •3.2. Серебро
- •3.3. Алюминий
- •3.4. Платина, золото, молибден.
- •3.5. Вольфрам и его сплавы.
- •4. Дугогасительные устройства.
- •Р исунок 3 - Контакторы постоянного и переменного тока с дугогасительными камерами
- •Дугогасительная решетка.
- •6. Электрические аппараты ручного управления.
- •1. Определение.
- •2. Основные виды аппаратов ручного управления.
- •3. Устройство, принцип действия и область применения аппаратов ручного управления, их достоинства и недостатки, основные типы.
- •2. Основные виды аппаратов ручного управления:
- •3.1. Рубильники, переключатели, разъединители и пакетные выключатели.
- •3.2. Ручные пускатели.
- •3.3. Контроллеры.
- •3.4. Пусковые сопротивления (реостаты).
- •3.5. Командоаппараты.
- •3.6. Автоматические выключатели (автоматы).
- •7. Виды защиты и аппараты защиты в электроустановках.
- •Виды защиты и аппараты защиты.
- •Рискнок 1 - Устройство и принцип действия предохранителей.
- •Р г исунок 6 - Схемы электротепловых реле (а, б), датчика-реле температуры (в) и схема дифференциального устройства отключения при перегрузке (г).
- •5. Выбор предохранителей и уставок тепловой и максимальной защиты. Термины и сокращения:
- •6 Специальные блоки защиты пмз и тзп
- •8. Автоматические выключатели общепромышленного
- •9. Электрические аппараты дистанционного управления
- •Климатическое у2, в3
- •Р м исунок 5 - Схема управления с пускателем и общий вид пускателя пма 6-й величины
- •Р км исунок 6 - Общий вид и схема комплектного пускового устройства кпу
- •Iут ( 1,05 1,1 ) Iном. Двигателя,
- •10. Электродвигатели для горных предпритятий.
- •Р 11 исунок 1 - Устройство и электрические схемы двигателя постоянного тока
- •Недостатки дпт:
- •6. Расчет мощности некоторых механизмов.
- •6. 4 Для токарных станков
- •6. 6 Для насосов
- •7.1 Прямой пуск (двигатель подключается на полное напряжение сети)
- •7.2 Пуск по схеме звезда – треугольник (сначала двигатель подключается на звезду, затем переключается на треугольник, в связи с чем напряжение на обмотках увеличивается в √3)
- •7.4 Пуск с помощью автотрансформатора
- •7 .5 Пуск изменением напряжения с помощью тиристорного регулятора или упп
- •11. Электропроводки.
- •Основным фактором, определяющим площадь сечения проводников, проложенных внутри помещений, а также в земле (воде), является выбор по нагреву.
- •12. Выбор площади сечения проводников
- •Факторы, влияющие на выбор сечения проводников
- •12. 1.Выбор сечения проводников по нагреву
- •12. 2 Проверка проводников по экономической плотности тока
- •12. 3 Проверка проводников по образованию короны
- •Провода не будут коронировать, если будет выполнено условие
- •Особенности выбора проводов воздушных линий по условию допустимой нагрузки.
- •12.4 Проверка проводников по допустимой потере напряжения
- •12. 5 Проверка проводников на соответствие выбранному аппарату защиты
- •12. 6 Проверка проводников по термической стойкости к токам кз.
- •12. 7 Проверка на электродинамическую стойкость проводников в режиме к ороткого замыкания.
- •Кабельные линии
- •Лучшими материалами для оболочек кабелей с бумажной изоляцией с точки
- •Р исунок 2 - Прокладка кабелей в каналах и проходном коллекторе.
- •Прокладка кабелей в каналах применяется внутри и вне помещений стационарных ус-
- •14 Коэффициент мощности.
- •15. Источники света и осветительные приборы.
- •Недостатки: те же, что и у дрл.
- •Р исунок 4 - Электрические схемы включения ламп: люминесцентных, накаливания, кварцевой галогенной, дрл, дНаТ, дКсТ. Общий вид прожектора кну 02 для лампы дКсТ -20000.
3.1. Медь
Удовлетворяет почти всем перечисленным выше требованиям, за исключением коррозийной стойкости. Оксиды меди имеют низкую проводимость.
Медь - самый распространенный контактный материал, используемый как для разборных, так и для коммутирующих контактов. В разборных соединениях применяются антикоррозийные покрытия рабочих поверхностей.
В коммутирующих контактах медь применяется при нажатии свыше ЗН для всех режимов работы, кроме продолжительного. Для продолжительного режима медь не рекомендуется, но если она применена, то следует принять меры по борьбе с окислением рабочих поверхностей.
3.2. Серебро
Очень хороший контактный материал, удовлетворяет всем требованиям, за исключением дугостойкости при значительных токах. При малых токах обладает значительной износостойкостью. Серебро используется для главных контактов в аппаратах на большие токи, для всех контактов продолжительного режима работы, в контактах на малые токи при малых нажатиях ( контакты реле, вспомогательных целей). Серебро обычно применяется в виде накладок - все детали выполняются из меди или другого материала, на который приваривается (припаивается) серебряная накладка, образующая рабочую поверхность.
3.3. Алюминий
По сравнению с медью обладает значительно меньшими проводимостью и механической прочностью. Образует плохо проводящую твердую оксидную пленку, что существенно ограничивает его применение. Может использоваться в разборных контактных соединениях. Для этого контактные рабочие поверхности серебрятся, меднятся или армируются медью.
Для коммутирующих контактов алюминий не пригоден.
3.4. Платина, золото, молибден.
Применяются для коммутирующих контактов на очень малые токи при малых нажатиях. Платина и золото не образует оксидных пленок. Контакты из этих металлов имеют малое переходное сопротивление. Для повышения износостойкости применяют сплавы из платины с иридием.
3.5. Вольфрам и его сплавы.
При большой твердости и высокой температуре плавления обладают высокой электрической износостойкостью. Вольфрам и сплавы вольфрам-молибден, вольфрам-платина, вольфрам-платина-иридий и другие применяются при малых токах для контактов с большой частотой размыкания. При средних и больших токах они используются в качестве дугогасительных контактов на отключаемые токи до 100 кА и более.
3.6. МЕТАЛЛОКЕРАМИКА - механическая смесь двух практически не сплавляющихся металлов. При этом один из металлов имеет хорошую проводимость, а другой обладает большой механической прочностью, является тугоплавким и дугостойким. Металлокерамика, таким образом, сочетает высокую дугостойкость с относительно хорошей проводимостью.
Наиболее распространенными композициями металлокерамики являются: серебро- вольфрам, серебро-молибден, серебро-никель, медь-вольфрам и др.
Применяются для дугогасительных контактов на средние и большие отключаемые токи до 600А.
3.7. Исследования и разработки в области твердометаллических контактов направлены на получение оптимального контактного материала с точки зрения экономичности и удовлетворительных электрофизических свойств.
В ряде случаев наиболее предпочтительными являются жидкометаллические контакты, которые в последнее время получают все большее применение.
Свойства текучести металла позволяют создавать коммутационные устройства на новых принципах действия.
В настоящее время признаны перспективными разработки, направленные на создание контактов, состоящих из твердометаллического каркаса, пропитанного жидким металлом. Например, жидкий металл удерживается в порах каркаса за счет капиллярных сил. Такой контакт обладает вибростойкостью, его работа не зависит от положения аппарата в пространстве.
При правильной конструкции ему присущи достоинства твердометаллического и жидкометаллического контактов при минимуме их недостатков.