Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
black questions.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
68.18 Mб
Скачать

Вопрос 4.

Зонная структура различных материалов

Рисунок 1: Упрощённая зонная диаграмма для проводников, полупроводников и диэлектриков.

В различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы (см. Рисунок 1):

  • металлы — зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твёрдому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.

  • полупроводники — зоны не перекрываются, и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости, требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.

  • диэлектрики — зоны не перекрываются, и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.

Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала.

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостьюконцентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где   — удельное сопротивление,   — подвижность электронов  — подвижность дырок,   — их концентрация, q —элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике.

Примесными центрами могут быть:

  1. атомы или ионы химических элементов, внедренные в решетку полупроводника;

  2. избыточные атомы или ионы, внедренные в междоузлия решетки;

  3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).

Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As5+, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях (рис. 1).

Рис. 1

Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10-19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — "дырки" не происходит и дырочная проводимость очень мала, т.е. практически отсутствует. Небольшая часть собственных атомов полупроводника ионизирована, и часть тока образуется дырками, т.е. донорные примеси — это примеси, поставляющие электроны проводимости без возникновения равного количества подвижных дырок. В итоге мы получаемполупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа.

В случае акцепторной примеси, например, трехвалентного индия In3+ атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает» (рис. 2). Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.

Рис. 2

Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называютсяполупроводниками р-типа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]