
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Собственная проводимость
- •Примесная проводимость
- •Вопрос 5.
- •Вопрос 6.
- •Ламповые диоды (Электровакуумный диод)
- •Вопрос 7.
- •Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
- •Вопрос 8.
- •Вопрос 9.
- •Физическая суть правила
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 17.
- •Вопрос 18.
- •Вопрос 19.
- •Вопрос 20.
Вопрос 1.
Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.. Единица измерения — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик.
Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами. Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними. Эти силы называются электростатическими (кулоновскими).
где
—
сила, с которой заряд 1 действует на
заряд 2;
—
величина зарядов;
—
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами —
);
—
коэффициент пропорциональности.
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :
.
Электростатический потенциа́л (кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Электростатический потенциал равен отношению потенциальной энергии взаимодействиязаряда с полем к величине этого заряда:
Напряжённость
электростатического поля
и
потенциал
связаны
соотношением
или обратно[2]:
Здесь
— оператор
набла,
то есть в правой части равенства стоит
минус градиент потенциала —
вектор с компонентами, равными частным
производным от
потенциала по соответствующим
(прямоугольным) декартовым координатам,
взятый с противоположным знаком.
|
(2.3.4) |
|
Поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме всех зарядов, расположенных внутри поверхности, деленной на ε0.
Фо́рмула Острогра́дского — математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:
то
есть интеграл
от дивергенции векторного поля
,
распространённый по некоторому объёму
,
равен потоку вектора
через поверхность
,
ограничивающую данный объём.
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.
Вопрос 2.
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
В системе СИ единица электроемкости называется фарад (Ф):
Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.
При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует
Таким образом, при параллельном соединении электроемкости складываются.
Рисунок 1.6.3. Рисунок 1.6.4.
Параллельное соединение. C = C1 + C2 Последовательное соединение конденсаторов.
При соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,
При последовательном соединении конденсаторов складываются обратные величины емкостей. Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.