Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
radiobiologia_2.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
140.05 Кб
Скачать

1.Строение ядра атома

Ядро представляет собой центральную часть атома. В нем сосредоточены положительный электрический заряд и основная часть массы атома; по сравнению с радиусом электронных орбит размеры ядра чрезвычайно малы: 10–15–10–14 м. Ядра всех атомов состоят из протонов и нейтронов, имеющих почти одинаковую массу, но лишь протон несет электрический заряд. Полное число протонов называется атомным номером Z атома, который совпадает с числом электронов в нейтральном атоме. Ядерные частицы (протоны и нейтроны), называемые нуклонами, удерживаются вместе очень большими силами; по своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, связывающие электроны с ядром.

2. Что такое изотопы

изотопы – это разновидности данного химического элемента, различающиеся по массе атомных ядер.близкие по своим физико-химическим свойствам, но имеющие разную атомную массу.

Различия в массах стабильных и радиоактивных изотопов одного и того же элемента в ряде случаев сказываются на свойствах веществ, на скоростях протекающих химических процессов и на состоянии термодинамических равновесий.

3. Что такое радиоактивность

Радиоактивность - это самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения.

4. Физическая природа и свойства альфа-лучей

Альфа-излучение – это корпускулярное ионизирующее излучение, представляет собой поток альфа-частиц (ядер атомов гелия) с энергией до 10 МэВ, начальная скорость около 20 тыс. км/с. с низкой проникающей и высокой ионизирующей способностью. Пробег α-частиц незначителен: в ткани человеческого тела они проникают на десятые или сотые доли миллиметра. 

5. Физическая природа и свойства бета-лучей

Бета-излучение (betaradiation) – корпускулярное ионизирующее излучение, поток электронов или позитронов, возникающий при бета-распаде атомных ядер с выбросом из ядра электрона или позитрона со скоростью, близкой к скорости света. Пробег β-частиц в воздухе колеблется в пределах от нескольких сантиметров до нескольких метров. Проникающая способность β-частиц больше, чем α-частиц, а ионизирующая способность значительно меньше.

6. взаимодействие гамма излучений с веществом. При радиоактивном распаде ядра испускаются g-кванты с различной энергией. При прохождении через вещество они теряют энергию практически за счёт трёх эффектов: фотоэлектрического поглощения, комптоновского рассеяния и образования электронно-позитронных пар.При фотоэлектрическом эффекте энергия падающего кванта полностью поглощается веществом, в результате появляются свободные электроны, обладающие определенной кинетической энергией. Свободный электрон, ассоциируясь с одним из нейтральных атомов, порождает отрицательный ион. Фотоэффект характерен только для длинноволнового рентгеновского излучения. При комптоновском эффекте g-кванты, сталкиваясь с электронами, передают им не всю свою энергию, а только часть её и после соударения изменяют своё направление движения. Образовавшиеся вследствие соударения с g-квантами электроны приобретают значительную кинетическую энергию и растрачивают её на ионизацию вещества. Интенсивность гамма-излучения ослабляется за счёт того, что g-кванты, взаимодействуя с электронами среды, рассеиваются в различных направлениях и уходят за пределы первичного пучка. Образование пар. Некоторые g-кванты с энергией не ниже 1,02 МэВ, проходя через вещество, превращаются под действием сильного электрического поля вблизи ядра в пару «электрон-позитрон». В данном случае происходит переход одной формы материи – гамма-излучения в другую – в частицы вещества. Образование такой пары частиц возможно только при энергиях квантов, не меньших, чем энергия, эквивалентная массе обоих частиц – электрона и позитрона. Образовавшаяся электронно-позитронная пара в дальнейшем исчезает, превращаясь в два вторичных g-кванта с энергией, равной энергетическому эквиваленту массы покою частиц – 0,511 МэВ.

7. Взаимодействие нейтронов с веществом.

Нейтроны не несут электрического заряда и поэтому могут беспрепятственно проникать внутрь атомов. При столкновении с ядрами атомов нейтроны либо отталкиваются от них (упругое и неупругое рассеяние), либо поглощаются ими. Приведем основные характеристики этих процессов.

8. Закон радиоактивного распада. Как его можно выразить.

ЗРР устанавливает, что за единицу времени распадается всего одна и та же доля имеющихся в наличии ядер.

,

где: N – число нераспавшихся ядер t,

Nо – начальное число нераспавшихся ядер (в момент времени t=0),

λпостоянная радиоактивного распада,

e – основание натурального логарифма.

9. Что такое физическая доза излучения, единицы дозы

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергиюзаряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

10. Поглощённая доза излучения. Поглощённая до́за — величина энергии ионизирующего излучения, переданная веществу. Выражается как отношение энергии излучения, поглощённой в данном объёме, к массе вещества в этом объёме. Основополагающая дозиметрическая величина. В Международной системе единиц (СИ) поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название — грэй (русское обозначение: Гр; международное: Gy) .Внесистемная единица - рад равна 0,01 Гр.

11. Эквивалентная доза излучения. Эквивале́нтнаядо́заотражает биологический эффект облучения, имеет расчётный показатель (измерить невозможно). Это поглощённая доза в органе или ткани, умноженная на коэффициент качества данного вида излучения, отражающий его способность повреждать ткани организма. При воздействии различных видов излучения с различными коэффициентами качества эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения. В Международной системе единиц (СИ) эквивалентная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название — зиверт (Зв, Sv). Внесистемная единица — бэр (1 бэр = 0,01 Зв).

12. Коэффициент относительной биологической эффективности. Коэффициент относительной биологической эффективности - величина, показывающая, во сколько раз биологическое действие ионизирующего излучения данного вида больше или меньше действиярентгеновского или ү-излучения. Чем коэффициент больше, тем опаснее данное излучение. С его помощью удается сравнивать радиобиологические эффекты, производимые разными типами излучения в одной и той же среде при равных количествах энергии, поглощаемой средой (при равных поглощенных дозах). Этот коэффициент характеризует способность излучения данного вида воздействовать на ткани организма, т.е. говорит об относительной биологической эффективности разных излучений. КОБЭ = Др/Дх

где Др — поглощенная доза рентгеновского или ү-излучения, Дх — поглощенная доза исследуемого вида излучения, вызывающая тот же биологический эффект.

13. Способы защиты от внешнего облучения

Основные принципы обеспечения радиационной безопасности от внешнего облучения:

1) уменьшение мощности источников (\"защита количеством\");

2) сокращение времени работы с источником (\"защита временем\");

3) увеличение расстояния от источников до работающих (\"защита расстоянием\");

4) экранирование источников излучения материалами, которые поглощают ионизирующее излучение («защита экраном\")

14.основные принципы радиационной безопасности.нормирование:не превышать допустимых пределов индивид. доз от всех ист не должна превышать допустимых приделов;обоснование:запрещаются все виды деятельности по исп ист излуч,при которых польза,полученная чел и обществом не превышает риск возможного вреда причиненного дополнит излуч. В практике наиб простым методом проверки принципа обосн. Является сложение пользы и вреда излуч(x-(y1+y2)≥0, где х-польза от примен и за вычетом затрат его созания или эксплуатации, y1- затрата на меры защиты, y2 –вред наносимый здоровью людуйо окруж среде без защит мероприятий. Разница между х и y1+y2 должна быть больше 0;оптимизация: поддержание на возможно низком и достижимом уровне с учетом эконом и соц факторов индивид доз облучения лиц при исп любого источника ии.”нормы радиац безопасности”НРБ99/2010,”основные санит правила обеспечив радиац безопасность”ОСПОРБ99/2010,ВНРБ99 нашли отражение ПДД внеш облуч и ПДДпоступления радионуклидов в организм чел обусловленного внут облуч.

15. Ионизационный метод обнаружения ядерных излучений.

Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация газов. При этом нейтральные молекулы и атомы газа разделяются на пары: положительные ионы и электроны. Если в облучаемом объеме создать электрическое поле, то под воздействием сил электрического поля электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы - к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность, а следовательно, и ионизирующая способность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений. Данный метод является основным, и его используют почти во всех дозиметрических приборах.

16. Ионизационный метод обнаружения ядерных излучений.

Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация газов. При этом нейтральные молекулы и атомы газа разделяются на пары: положительные ионы и электроны. Если в облучаемом объеме создать электрическое поле, то под воздействием сил электрического поля электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы - к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность, а следовательно, и ионизирующая способность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений. Данный метод является основным, и его используют почти во всех дозиметрических приборах.

17.Фотохимические,колориметрические,и химические методы обноружения ядерных излучений

Фотохимический метод получения основан на действии ультрафиолетового излучения с длиной волны 303—313 нм на смесь фтора и криптона. При этом можно получать продукт со скоростью 1,22 грамма в час.[3] Более жёсткое излучение (с длиной волны менее 300 нм) активирует обратный процесс распада дифторида. Наиболее оптимальной температурой является 77 К, при этой температуре криптон находится в твёрдом состоянии, а фтор — в жидком.

Химический метод основан на свойствах некоторых химических веществ под воздействием радиоактивных излучений вследствие окислительных или восстановительных реакций изменять свою структуру или цвет. Так, хлороформ в воде во время облучения разлагается с образованием соляной кислоты, которая вступает в цветную реакцию с красителем, добавленным к хлороформа. В кислой среде двухвалентное железо окисляется в трехвалентное под воздействием свободных радикалов Н0 2 и ОН, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. Интенсивность изменения цвета индикатора зависит от количества соляной кислоты, образовавшейся под воздействием радиоактивного излучения, а ее количество пропорциональна дозе радиоактивного излучения. По интенсивности образованного окраски, является эталоном, определяют дозу радиоактивных излучений. По этому методу работают химические дозиметры ДП-20 и ДП-70 М.

Калориметрический метод базируется на изменении количества теплоты, выделяющейся в детекторе поглощения энергии ионизирующих излучений.

Нейтронно-активационный метод удобен при оценке доз в аварийных ситуациях, когда возможно кратковременное облучение большими потоками нейтронов. По этому методу измеряют наведенную активность, и в некоторых случаях он является единственно возможным в регистрации "особенно слабых нейтронных потоков, потому, что приведенная ими активность имела для надежных измерений обычными методами.

18.Биологическое действие ионизирующих излучений, изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения) или потоков заряженных частиц (альфа-частицбета-излученияпротонов) и нейтронов.

Исследования Б. д. и. и. были начаты сразу после открытия рентгеновского излучения (1895) ирадиоактивности (1896). В 1896 русский физиолог И. Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Особенно интенсивно стали развиваться исследования Б. д. и. и. с началом применения атомного оружия (1945), а затем и мирного использования атомной энергии.

Для Б. д. и. и. характерен ряд общих закономерностей. 1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001°С. Попытка объяснить "несоответствие" количества энергии результатам воздействия привела к созданию теории мишени,согласно которой лучевое повреждение развивается при попадании энергии в особенно радиочувствительную часть клетки — "мишень". 2) Б. д. и. и. не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения Б. д. и. и. и защиты организма от излучений. 3) Для Б. д. и. и. характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких мин до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции

19.Основные этапы в развитии биологического действия ионизирующих излучений. Все радиобиологические реакции начинаются одинаково, т.е. с формирования молекулярных и клеточных повреждений в результате передачи им энергии излучения, и заканчиваются физиологическими и морфологическими изменениями в облученном организме. В механизме биологического действия ионизирующих излучений на живые объекты выделяют ряд последовательных этапов, объединенных между собой причинно-следственными связями: 1.Физико-химический этап (ионизация и возбуждение атомов и молекул) 2.Химический этап (образование свободных радикалов) 3.Биомолекулярный этап (повреждения белков, нуклеиновых кислот и других биомолекул) 4.Ранние биологические эффекты (гибель клеток, гибель организма) 5.Отдаленные биологические эффекты (опухоли, ге­нетические эффекты, гибель организма и т. д.)

 В механизме биологического действия ионизирующих излучений на живые объекты условно выделяют два основных этапа. Первый этап – первичное (непосредственное) дей­ствие излучения на биохимические процессы, функции и структуры органов и тканей. Второй этап – опосредованное действие, которое обуславливается измене­ниями, возникающими в организме под влиянием облучения. В результате многочисленных опытов, проведенных при облучении различных молекул, вирусов и бактерий, было предложено два теоретических направления, объясняющих механизм первичного действия ионизирующей радиации: 1) теория прямого действия излучений на молекулы, входящие в состав веществ и клеток; 2) теория косвенного действия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]