
- •Вопрос 1.Классификация неорганических веществ
- •Вопрос 2. Классификация, получение и свойства оксидов
- •Вопрос 3. Классификация, получение и свойства кислот
- •4 Классификация, получение и свойства оснований
- •5.Классификация, получение и свойства солей
- •6.Номенклатура солей. Название кислых, средних и основных солей
- •7.Основные законы химии
- •8.Химический эквивалент
- •9.Закон эквивалентов и следствия из него. Применение закона для реакций с участием газов и реакций ионного обмена в водных растворах.
- •10.Ядерная модель строения атома Резерфорда. Строение ядра атомов. Изотопы и изобары
- •Вопрос 28
- •Вопрос 33 Реакции 0-го порядка. Скорость этих реакций не зависит от концентрации:
- •Вопрос 37. Уравне́ние Арре́ниуса устанавливает зависимость константы скорости химической реакции от температуры .
- •Вопрос 38. Химическим равновесием называется такое состояние химической системы, при котором количества исходных веществ и продуктов не меняются со временем.
- •Вопрос 40. Принцип Ле-Шателье:
- •Вопрос 42
- •Вопрос 43.
- •Вопрос 44. Первый закон термодинамики
- •Вопрос 47 Энтропия – это одна из функций состояния
- •Вопрос 51 Массовая доля растворённого вещества w(b) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :
- •Вопрос 53
- •Вопрос 59.
- •Вопрос 60.
- •Вопрос 68. Растворимостью вещества называют способность ее растворяться в той или иной среде. (Раствори́мость — способность вещества образовывать с другими веществами однородные системы ).
- •Вопрос 70.
- •Вопрос 72. Реакция ионного обмена — реакции между двумя сложными веществами- электролитами в растворах, в результате
- •Вопрос 74. .Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.
- •Вопрос 75. Различные случи солей гидролиза..
- •Вопрос 76. Вопрос 77. Степень гидролиза[править | править исходный текст]
- •1.1 Характеристики гидролиза
Вопрос 59.
Вопрос 60.
Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:
Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
где α — степень диссоциации.
Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теорииэлектролитической диссоциации.
Вопрос 61. ионное произведение воды, произведение концентраций (точнее активностей) ионов водорода Н+ и ионов гидроксила OH— в воде или в водных растворах: KB = [Н+] [ОН—]. См. .Водородный показатель (рН) величина, характеризующая актив ность или концентрацию ионов водорода в растворах. Водородный показатель обозначается рН. Водородный показатель численно равен отрицательному десятичному логарифму активности или концентрации ионов водорода, выраженной в молях на литр: pH=-lg[ H+]
Вопрос 62. Характеристика реакции среды обычно выражается очень малыми величинами с отрицательными показателями степени. Для большего удобства принято пользоваться отрицательным значением логарифма величины [H+], который назван водородным показателем, обозначается рН:
рН = –lg [H+] [H+] = 10–pH
Если реакция среды нейтральная, то [H+]=10–7, а рН=7.
Если реакция кислая, то [H+]>10–7, а рН<7.
Если среда щелочная, то [H+]<10–7, а рН>7.
Вопрос 63-64. .Расчёт рН и рОН растворов сильных и слабых электролитов. Концентрацию ионов Н+ определяют по уравнению Оствальда: [H+]= ; аналогично для гидроксила: [ОH–]= ; Дебая-Хюккеля теория, статистическая теория разбавленных растворов сильных электролитов, позволяющая рассчитать коэффициент активности ионов. Основана на предположении о полной диссоциации электролита на ионы, которые распределены в растворителе, рассматриваемом как непрерывная среда. Каждый ион действием своего электрического заряда поляризует окружение и образует вокруг себя некоторое преобладание ионовпротивоположного знака - т. наз. ионную атмосферу. В отсутствие внеш. электрич. поля ионная атмосфера имеет сферич. симметрию и ее заряд равен по величине и противоположен по знаку заряду создающего ее центр. иона. Потенциал j суммарного электрич. поля, создаваемого центр. ионом и его ионной атмосферой в точке, расположенной на расстоянии r от центр. иона, может быть рассчитан, если ионную атмосферу описывать непрерывным распределением плотности r заряда около центр. иона. Для расчета используют уравнение Пуассона (в системе СИ): n2j = -r/ee0, где n2-оператор Лапласа, e - диэлектрич. проницаемость растворителя, e0 - электрич. постоянная (диэлектрич. проницаемость вакуума). Для каждого i-го сорта ионов r описывается ф-цией распределения Больцмана; тогда в приближении, рассматривающем ионы как точечные заряды (первое приближение Дебая-Хюккеля теории), решение уравнения Пуассона принимает вид: Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:
Вопрос 65. Сильные электролиты в растворе практически полностью диссоциируют на ионы, т.е. истинное значение . Однако величина степени диссоциации, определяемая по физическим свойствам этих растворов (электропроводность, температура замерзания и т.д.) всегда меньше единицы. Кроме того, к растворам сильных электролитов неприменим закон действия масс в его обычной форме. Наблюдаемые отклонения в свойствах растворов сильных электролитов связаны с сильным электростатическим взаимодействием ионов в растворе. Каждый ион окружён «ионной атмосферой» из ионов противоположного знака, которая влияет на его подвижность и вызывает отклонение свойств от ожидаемых величин. Для характеристики растворов сильных электролитов вместо их истинной концентрации используют активность ( ), т.е. условную эффективную концентрацию в соответствии с которой они проявляют себя в химических и физических процессах.
Степень диссоциации, отношение числа молекул, распавшихся придиссоциации, к их общему числу. Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учётом различных взаимодействий между ними в растворе, то есть с учётом отклонения поведения системы от модели идеального раствора.
Вопрос 66. Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:
,
где ci — молярные концентрации отдельных ионов (моль/л), zi заряды ионов
Суммирование проводится по всем типам ионов, присутствующих в растворе. Если в растворе присутствуют два или несколько электролитов, то вычисляется общая суммарная ионная сила раствора.
Ионная сила раствора имеет большое значение в теории сильных электролитов Дебая — Хюккеля. Основное уравнение этой теории (предельный закон Дебая — Хюккеля) показывает связь между коэффициентом активности иона ze и ионной силы раствора I в виде:
,
где γ — коэффициент активности, А — постоянная, не зависящая от заряда иона и ионной силы раствора, но зависящая от диэлектрической постоянной растворителя и температуры.
Вопрос 67. Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) — безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы. Смысл параметра ясен из определения каждого из коллигативных параметров: они зависят от концентрации в растворе частиц растворённого вещества. Неэлектролиты в растворе не диссоциируют, стало быть, каждая молекула неэлектролита образует в растворе лишь одну частицу. В свою очередь, электролиты в растворе под влиянием сольватации частично или полностью распадаются на ионы, образуя при этом несколько частиц на одну диссоциировавшую молекулу. Соответственно, и коллигативные свойства данного раствора (аддитивные величины) зависят от содержания в нём частиц (ионов) каждого типа из тех, которым принадлежат частицы, образовавшиеся в растворе в результате диссоциации исходной молекулы, — раствор представляется как бы смесью растворов каждого из типов частиц.