
- •1 Введение
- •2 Примерная программа учебной дисциплины
- •2.1 Примерный тематический план
- •2.2 Примерное содержание учебной дисциплины и методические указания Введение
- •Методические указания
- •Вопросы для самоконтроля
- •Раздел 1 физические свойства жидкостей
- •Тема 1.1 Основные физические свойства жидкостей
- •Методические указания
- •Пример решения задачи по теме 1.1 Основные физические свойства жидкости
- •Вопросы для самоконтроля
- •Раздел 2 гидростатика
- •Тема 2.1 Давление законы гидростатики
- •Методические указания
- •Пример решения задачи по теме 2.1 Давление и законы гидростатики
- •Вопросы для самоконтроля
- •Тема 2.2 Силы давления
- •Методические указания
- •Пример решения задачи по теме 2.2 Силы давления
- •Вопросы для самоконтроля
- •Раздел 3 гидродинамика Тема 3.1 Основы гидродинамики и уравнения движения жидкости Студент должен:
- •Методические указания
- •Пример решения задачи по теме 3.1 Основы гидродинамики и уравнения движения жидкости
- •Вопросы для самопроверки
- •Тема 3.2 Гидравлические сопротивления
- •Методические указания
- •Пример решения задачи по теме 3.2 Гидравлические сопротивления
- •Вопросы для самоконтроля
- •Тема 3.3 Движение жидкости в трубопроводах
- •Методические указания
- •Пример решения задачи по теме 3.3 Движение жидкости в трубопроводах
- •Вопросы для самоконтроля
- •Тема 3.4 Истечение жидкости из отверстий и насадков
- •Методические указания
- •Пример решения задачи по теме 3.4 Истечение жидкости из отверстий и насадков
- •Вопросы для самоконтроля
- •Тема 3.5 Движение жидкости в пористой среде
- •Методические указания
- •Пример решения задачи по теме 3.5 Движение жидкости в пористой среде
- •Вопросы для самоконтроля
- •Тема 3.6 Неньютоновские жидкости
- •Методические указания
- •Пример решения задачи по теме 3.6 Неньютоновские жидкости
- •Вопросы для самоконтроля
- •3 Примерный перечень лабораторных работ
- •4 Задание для контрольной работы
- •4.1 Общие указания
- •4.2 Контрольная работа
- •Перечень рекомендуемой литературы
- •5.1 Основная литература
- •5.2 Дополнительная литература
- •5.3 Научно-популярная литература
- •Содержание
Тема 2.2 Силы давления
Студент должен:
знать: |
действие давления на различные стенки |
уметь: |
применять законы гидростатики для решения практических задач |
Давление жидкости на плоские поверхности. Центр давления. Эпюры гидростатического давления. Давление жидкости на криволинейные поверхности. Горизонтальная и вертикальная составляющие силы давления. Закон Архимеда. Простые гидравлические машины и устройства.
Практическое занятие 1
Решение задач на законы гидростатики
Литература. [2], стр.36-54; [9], стр.38-56; [11], стр.34-50; [7], стр.20-26, 44-49
Методические указания
Давление жидкости на плоские поверхности
Полная результирующая сила давления жидкости на плоскую стенку равна произведению результирующего давления в центре тяжести стенки на смоченную площадь стенки.
R = рС·F = (р0 + ρ·g·hС) ·F,
где рС – давление в центре тяжести стенки;
hС – глубина погружения центра тяжести стенки под свободной поверхностью жидкости;
F – смоченная площадь стенки.
Необходимо помнить о двух характерных точках: точка С – центр тяжести, то есть точка приложения силы тяжести (веса тела) и точка О – центр давления, то есть точка приложения силы давления. Центр давления (точка О) всегда лежит ниже центра тяжести (точки С) ([9], стр.42-43, табл.10).
Анализ уравнения (частные случаи)
Если давление на свободную поверхность жидкости и внешнее давление на стенку равны атмосферному, то сила давления на стенку равна
R = ρ·g·hС ·F
Если угол наклона стенки к горизонту (угол α) равен нулю, то есть имеет место дно сосуда, то сила давления на дно равна
R = ρ·g·Н·F,
где Н – глубина жидкости в сосуде.
Таким образом, давление на дно зависит не от формы и объема сосуда, а только от площади дна и глубины жидкости в сосуде. Поэтому для сосудов разной формы, заполненных одной и той же жидкостью до одного и того же уровня Н и имеющих одинаковую площадь дна F, сила полного давления на дно R будет одинакова. Этот вывод известен под названием гидростатического парадокса.
Эпюры гидростатического давления
Исходя из основного уравнения гидростатики,
р = р0 + ρ∙g∙h
ризб = ρ∙g∙h
Зависимость между гидростатическим давлением в точке жидкости и глубиной погружения этой точки, изображенная графически, называется эпюрой гидростатического давления. При построении эпюры гидростатического давления необходимо учитывать следующие положения:
гидростатическое давление направлено по внутренней нормали (то есть перпендикулярно) к площадке, на которую действует;
величина гидростатического давления в данной точке не зависит от направления, то есть от ориентировки (угла наклона) в пространстве площадки, включающей эту точку;
чем больше глубина погружения точки, тем больше величина давления на эту точку.
Закон Архимеда
Вертикальная составляющая силы давления со стороны жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме погруженной части тела (весу вытесненной жидкости)
R = ρ·g·V,
где ρ – плотность жидкости, в которую погружено тело;
V – объем погруженной части тела (равный объему вытесненной жидкости)
Гидростатические машины (простые гидравлические машины, механизмы, устройства):
гидравлический пресс;
гидравлический домкрат;
гидравлический аккумулятор;
гидравлический мультипликатор (преобразователь давления);
силовые цилиндры;
гидравлический динамометр (мессдоза);
устройства на воздушной подушке.