Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по бд.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.79 Mб
Скачать

Концептуальные и физические er-модели

Разработанный выше пример ER-диаграммы является примером концептуальной диаграммы. Это означает, что диаграмма не учитывает особенности конкретной СУБД. По данной концептуальной диаграмме можно построить физическую диаграмму, которая уже будут учитываться такие особенности СУБД, как допустимые типы и наименования полей и таблиц, ограничения целостности и т. п. Физический вариант диаграммы, приведенной на Рис. 9 может выглядеть, например, следующим образом:

Рис. 10

На данной диаграмме каждая сущность представляет собой таблицу базы данных, каждый атрибут становится колонкой соответствующей таблицы. Обращаем внимание на то, что во многих таблицах, например, «CUST_DETAIL» и «PROD_IN_SKLAD», соответствующих сущностям «Запись списка накладной» и «Товар на складе», появились новые атрибуты, которых не было в концептуальной модели – это ключевые атрибуты родительских таблиц, мигрировавших в дочерние таблицы для того, чтобы обеспечить связь между таблицами посредством внешних ключей.

Легко заметить, что полученные таблицы сразу находятся в 3НФ.

Выводы

Реальным средством моделирования данных является не формальный метод нормализации отношений, а так называемое семантическое моделирование.

В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER – Entity-Relationship).

Диаграммы сущность-связь позволяют использовать наглядные графические обозначения для моделирования сущностей и их взаимосвязей.

Различают концептуальные и физические ER-диаграммы. Концептуальные диаграммы не учитывают особенностей конкретных СУБД. Физические диаграммы строятся по концептуальным и представляют собой прообраз конкретной базы данных. Сущности, определенные в концептуальной диаграмме становятся таблицами, атрибуты становятся колонками таблиц (при этом учитываются допустимые для данной СУБД типы данных и наименования столбцов), связи реализуются путем миграции ключевых атрибутов родительских сущностей и создания внешних ключей.

При правильном определении сущностей, полученные таблицы будут сразу находиться в 3НФ. Основное достоинство метода состоит в том, модель строится методом последовательных уточнений первоначальных диаграмм.

В данной главе, являющейся иллюстрацией к методам ER-моделирования, не рассмотрены более сложные аспекты построения диаграмм, такие как подтипы, роли, исключающие связи, непереносимые связи, идентифицирующие связи и т. п.

Внутренняя организация реляционных субд Cтруктуры внешней памяти, методы организации индексов

Реляционные СУБД обладают рядом особенностей, влияющих на организацию внешней памяти. К наиболее важным особенностям можно отнести следующие:

  • Наличие двух уровней системы: уровня непосредственного управления данными во внешней памяти (а также обычно управления буферами оперативной памяти, управления транзакциями и журнализацией изменений БД) и языкового уровня (например, уровня, реализующего язык SQL). При такой организации подсистема нижнего уровня должна поддерживать во внешней памяти набор базовых структур, конкретная интерпретация которых входит в число функций подсистемы верхнего уровня.

  • Поддержание отношений-каталогов. Информация, связанная с именованием объектов базы данных и их конкретными свойствами (например, структура ключа индекса), поддерживается подсистемой языкового уровня. С точки зрения структур внешней памяти отношение-каталог ничем не отличается от обычного отношения базы данных.

  • Регулярность структур данных. Поскольку основным объектом реляционной модели данных является плоская таблица, главный набор объектов внешней памяти может иметь очень простую регулярную структуру.

  • При этом необходимо обеспечить возможность эффективного выполнения операторов языкового уровня как над одним отношением (простые селекция и проекция), так и над несколькими отношениями (наиболее распространено и трудоемко соединение нескольких отношений). Для этого во внешней памяти должны поддерживаться дополнительные «управляющие» структуры – индексы.

  • Наконец, для выполнения требования надежного хранения баз данных необходимо поддерживать избыточность хранения данных, что обычно реализуется в виде журнала изменений базы данных.

Соответственно возникают следующие разновидности объектов во внешней памяти базы данных:

  • строки отношений – основная часть базы данных, большей частью непосредственно видимая пользователям;

  • управляющие структуры – индексы, создаваемые по инициативе пользователя (администратора) или верхнего уровня системы из соображений повышения эффективности выполнения запросов и обычно автоматически поддерживаемые нижним уровнем системы;

  • журнальная информация, поддерживаемая для удовлетворения потребности в надежном хранении данных;

  • служебная информация, поддерживаемая для удовлетворения внутренних потребностей нижнего уровня системы (например, информация о свободной памяти).