- •Означення та приклади подій: випадкова, достовірна, неможлива, елементарна, складна.
- •Означення та приклад повної групи подій та простору елементарних подій.
- •Класичне означення ймовірності випадкової події.
- •Сформулювати аксіоми класичної теорії ймовірностей.
- •Дати означення та вказати властивості перестановки, сполучення, комбінації елементів.
- •Дати означення відносної частоти появи події.
- •Дати геометричне та статистичне означення ймовірності.
- •Дати визначення умовної ймовірності.
- •Формула множення ймовірностей для залежних та незалежних подій.
- •Формула для обчислення появи хоча б однієї події .
- •Формула повної ймовірності.
- •Формули Байєса.
- •Означення експерименту за схемою Бернуллі.
- •Формула Бернуллі для обчислення ймовірностей, умова використання. Наслідки.
- •Найімовірніше число появ події в схемі Бернуллі.
- •Сформулювати локальну теорему Муавра-Лапласа.
- •Властивості функції Лапласа:
- •Означення випадкової величини, дискретної та неперервної випадкових величин.
- •Закон розподілу випадкової величини.
- •Інтегральна функція розподілу випадкової величини: означення. Властивості.
- •Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
- •Математичне сподівання випадкової величини: означення, властивості.
- •Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
- •Властивості дисперсії
- •Мода, медіана випадкової величини.
- •Початкові та центральні моменти.
- •Асиметрія, ексцес.
- •Означення багатовимірної випадкової величини.
- •Означення закону розподілу багатовимірної випадкової величини.
- •Основні числові характеристики для системи двох дискретних випадкових величин.
- •Коефіцієнт кореляції та його властивості.
- •Функція розподілу ймовірностей та щільність ймовірностей системи
- •Двовимірний нормальний закон розподілу.
- •Закон розподілу Бернулі
- •Біноміальний закон розподілу двв. Числові характеристики.
- •Пуасонівський закон розподілу двв, числові характеристики.
- •Геометричний закон розподілу двв, числові характеристики.
- •Гіпергеометричний закон розподілу двв, числові характеристики.
- •Рівномірний закон розподілу нвв.
- •Нормальний закон розподілу.
- •Показниковий закон та його використання в теорії надійності та теорії черг.
- •Розподіл
- •Розподіл Стьюдента. Розподіл Фішера. (45-46)
- •Правило трьох сигм. Логарифмічний нормальний закон.
- •Функції одного дискретного випадкового аргументу.
- •.Числові характеристики функції одного дискретного випадкового аргументу.
- •Функції неперервного випадкового аргументу та їх числові характеристики.
- •Функції двох випадкових аргументів та їх числові характеристики.
- •Числові характеристики функції дискретного випадкового аргументу
- •Нерівності Чебишева та їх значення.
- •Теорема Чебишева.
- •Теорема Бернуллі.
- •Центральна гранична теорема теорії ймовірностей ( теорема Ляпунова) та її використання у математичній статистиці.
- •Предмет і задачі математичної статистики.
- •Утворення вибірки. Генеральна та вибіркова сукупність.
- •Статистичні розподіли вибірок.
- •Емпірична функція розподілу, гістограма та полігон.
- •Числові характеристики: вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •Мода й медіана, емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •Дати визначення статистичної оцінки.
- •Точкові та інтервальні статистичні оцінки.
- •Дати визначення довірчого інтервалу.
- •Що таке нульова та альтернативна статистичні гіпотези.
- •Перевірка (правдивості нульової) гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •Емпіричні та теоретичні частоти.
- •Критерії узгодження Пірсона та Колмогорова.
- •Помилки першого та другого роду.
- •Статистичний критерій. Критична область.
- •Дати означення моделі експерименту.
- •Дати поняття одно факторний аналіз.
- •Загальна дисперсія, між групова та внутрішньогрупова дисперсії.
- •. Поняття про функціональну, статистичну та кореляційну залежності.
- •Рівняння лінійної регресії. Довірчий інтервал для лінії регресії
- •Вибірковий коефіцієнт кореляції.
- •Множинна регресія, множинний коефіцієнт кореляції та його властивості.
- •Нелінійна регресія.
- •85) Визначення та приклади ланцюгів Маркова.
- •Інтуїтивне визначення
- •Формальне визначення
- •Граф переходів ланцюга Маркова
- •86) Ймовірність переходу за n кроків.
- •87) Замкнуті множини станів.
- •88) Класифікація станів. Неповоротний стан.
- •1. Ергодичний стан
- •2. Нестійкі стани
- •3. Поглинальні стани
- •89) Ергодична властивість неперіодичних ланцюгів. Стаціонарний розподіл.
- •90) Періодичні ланцюги.
- •91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
- •92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
- •93) Гілчастий процес.
- •94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
- •96) Випадковий проце, стаціонарний у широкому сенсі.
- •97) Аналіз кореляційної функції. Ергодичність.
- •100) Рівняння Колмогорова - Чепмена
Правило трьох сигм. Логарифмічний нормальний закон.
Якщо ВВХ розподіляється
нормально, то ймовірність
→0,
тобто практично достовірною є подія,
що ВВХ відхилена від свого середнього
значення а (М(х)) не більше, ніж на потроєне
середнє квадратичне відхилення
.
Якщо закон розподіл ВВХ невідомий, але
,
то закон розподілу є нормальний.
Нехай Y має закон
розподілу
Закон розподілу випадкової величини Х із щільністю називають логарифмічним нормальним законом.
Функції одного дискретного випадкового аргументу.
Функцією випадкового
аргументу Х називають таку випадкову
величину Y, яка набуває значення Y = у
=
(х)
щоразу, коли Х = х, де
є невипадковою функцією. Якщо Х є
дискретною випадковою величиною, то і
функція випадкового аргументу Y =
(х)
буде дискретною.
Коли Х є неперервною випадковою величиною, то і Y = (х) буде неперервною.
1.1. Функції дискретного випадкового аргументу
Нехай закон дискретної випадкової величини Х задано таблицею:
Х = хi |
x1 |
x2 |
x3 |
............ |
xk |
P(X=xi)= pi |
p1 |
p2 |
p3 |
............. |
pk |
Тоді закон розподілу випадкової величини Y = (х) матиме такий вигляд:
Y = α (хi) |
α (х1) |
α (х2) |
α (х3) |
.................. |
α (хk) |
P(Y = α (хi) = рi |
p1 |
p2 |
p3 |
............... |
pk |
де кожне можливе значення Y дістають, виконуючи ті операції, які вказані в невипадковій функції, умовно позначеній α.
При цьому, якщо в законі розподілу випадкової величини Y є повторення значень, то кожне з цих значень записують один раз, додаючи їх імовірності.
Приклад 1.
Закон розподілу дискретної випадкової величини Х задано таблицею:
-
Х = хi
– 4
–2
–1
1
2
4
Р(X = хi) = рi
0,1
0,2
0,1
0,1
0,2
0,3
Побудувати закон розподілу ймовірностей для Y = 3х2.
Розв’язання. Iз функціональної залежності Y = 3х2 маємо:
Y = 3хi2 |
16 |
4 |
1 |
1 |
4 |
16 |
Р(у = 3хi2) = рi |
0,1 |
0,2 |
0,1 |
0,1 |
0,2 |
0,3 |
Ураховуючи повтори можливих значень Y, дістаємо:
Р (у = 16) = 0,1 + 0,3 = 0,4;
Р (у = 4) = 0,2 + 0,2 = 0,4;
Р (у = 1) = 0,1 + 0,1 = 0,2.
Отже, закон розподілу дискретної випадкової величини Y набирає такого вигляду:
Y = уj |
1 |
4 |
16 |
Р (у = уj) = рj |
0,2 |
0,4 |
0,4 |
