- •Вопрос 1.Определители 2-го и 3-го порядка. Свойства определителей
- •Вопрос 17. Множества. Операции над множествами
- •Основные числовые множества
- •Свойства операций над множествами
- •Вопрос 18. Числовые множества. Окрестность
- •Вопрос 19. Предел последовательности. Теорема о единственности предела.
- •Вопрос 20.Ограниченность сходящейся последовательности. Теорема Вейерштрасса
- •Вопрос 21.Предел функции в точке и на бесконечности. Свойства пределов функции
- •Вопрос 22. Бесконечно малые функции. Односторонние пределы
- •Вопрос 23. Непрерывность функции в точке. Свойства функций непрерывных в точке
- •Вопрос 24. Непрерывность функции на отрезке. Свойства функций непрерывных на отрезке
- •Вопрос 25. Точки разрыва функции, их классификация
- •Вопрос 27. Правила нахождения производной. Производная сложной функции.
- •Вопрос 28 Производная функции в точке,её геометрический и физический смысл. Связь непрерывности и дифференцируемости
- •Вопрос 29. Производные высших порядков. Механический смысл второй производной. Формула Лейбница.
- •Вопрос 30. Правило Лопиталя
- •Вопрос 31. Дифференциал функции, его свойства, геометрический смысл. Инвариантность дифференциала нового порядка
- •Вопрос 32. Теорема Ролля. Теорема Лагранжа. Теорема Коши
- •Вопрос 33. Промежутки монотонности функции. Необходимые и достаточные условия монотонности.
- •Вопрос 39. Частные производные первого порядка фнп. Геометрический смысл частных производных функций двух переменных
Вопрос 39. Частные производные первого порядка фнп. Геометрический смысл частных производных функций двух переменных
Частной
производной по x функции z
= f(x,y) в
точке A(x0,y0)
называется предел отношения частного
приращения по x
функции
в точке A к
приращению ∆x при
стремлении ∆x к
нулю.
Частные
производные функции z(x,y) находятся
по следующим формулам:
Вторые
частные производные функции z(x,y) находятся
по формулам:
Ели
одному из аргументов функции z
= f(x,y) придать
приращение, а другой аргумент не изменять,
то функция получит частное
приращение по одному из аргументов:
–
это частное
приращение функции z
по аргументу x;
–
это частное приращение функции z по
аргументу у.
Частной
производной функции нескольких
переменных по
одному из её аргументов называется
предел отношения частного приращения
функции по этому аргументу к соответствующему
приращению аргумента при условии, что
приращение аргумента стремится к
нулю:
–
это частная производная функции z по
аргументу x;
–
это частная производная функции z по
аргументу у.
Чтобы
вычислить частную производную ФНП по
одному из её аргументов, нужно все другие
её аргументы считать постоянными и
проводить дифференцирование по правилам
дифференцирования функции одного
аргумента.
