Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матричные биоситезы и энергетический обмен.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
531.97 Кб
Скачать

Матричные биосинтезы

На ранних этапах исследования синтеза одной дезоксирибонуклеиновой кислоты (ДНК) по информации с другой ДНК, затем рибонуклеиновой кислоты (РНК) по информации, которую хранит в себе ДНК и далее синтез белка по информации матричной РНК все эти процессы последовательного считывания сравнивали с получением отпечатков с типографских матриц. Поэтому запрограммированный с помощью нуклеиновых кислот (НК) процесс сборки новых цепей биополимеров называют матричным  биосинтезом, а сами молекулы НК, используемые как программы в матричном биосинтезе, - матрицами. Но более уместно было бы сравнивать несущую информацию НК с лентой магнитофона на которую записана информация либо с дискетой.

 

У всех живых организмов ДНК является первичным носителем генетической информации. Это значит, что в  структуре молекулы ДНК в виде последовательности нуклеотидов записана вся программа, необходимая для жизнедеятельности клетки, ее реакции на различные внешние воздействия.

 

У прокариот (доядерных организмов) вся наследственная информация представлена на одной кольцевой молекуле ДНК, состоящей из нескольких миллионов пар нуклеотидов. Иногда часть информации содержится в нескольких небольших кольцевых ДНК - плазмидах.

 

У эукариот  (имеющих клеточное ядро) - ДНК в основном сосредоточена в хромосомах. В каждой хромосоме содержится одна двунитевая ДНК, размер которой достигает сотен миллионов пар нуклеотидов. Относительно маленькие молекулы ДНК содержатся в митохондриях. Они необходимы для синтеза митохондриальных РНК и митохондриальных белков. Двунитевая молекула построена по принципу комплементарности. Т. е. когда каждая из четырех НК предпочитает взаимодействовать (образовывать водородные связи) только с одной НК из трех возможных. Так аденин взаимодействует через О-Н связи только с тимином (А -Т), а гуанин с цитозином (Г - Ц).

 

Синтез полипептидной цепи (ДНК, РНК или белка) в клетках складывается из трех основных этапов: инициации, элонгации и терминации.

 

Инициация  - образование связи между мономерными звеньями создаваемой полимерной цепи. Далее мономер присоединяется к образовавшемуся димеру, тримеру, тетрамеру и т.д. - это уже элонгация.

 

Элонгация - соединение очередного мономера с растущей полимерной цепью. Этот процесс происходит в активном центре фермента полимеразы. Затем участок, полимера к которому присоединился мономер, выдвигается из зоны активного центра фермента - это процесс транслокации.

 

Терминация - окончание сборки полимера. Для этого на матрице имеется определенный участок - терминатор (по его информации невозможно подобрать необходимый мономер).

 

Все процессы, происходящие с участием ДНК можно разделить на два вида:

1)      использование информации, записанной на ДНК, для синтеза молекул РНК, а затем клеточных белков

2)      сохранение, размножение и изменение информационного содержания молекул ДНК

 

Каждая программа, записанная на ДНК может быть многократно считана.

 

Способность ДНК к точному самоудвоению при произвольной последовательности нуклеотидов в ее цепях заложен и в самом принципе построения ДНК в виде двунитевой структуры со взаимно комплементарными последовательностями. Это означает, что каждая  из цепей содержит  полную информацию о строении противоположной цепи. При расхождении двунитевой ДНК каждая из цепей может воспроизвести другую цепь - это процесс репликации. Он реализуется при участии ферментов ДНК-полимераз. Матричный синтез ДНК выполняет две основные функции: репликацию (удвоение) ДНК, т.е. синтез новых дочерних цепей, комплементарных исходным матриксным цепям, и репарацию(восстановление) ДНК, если одна из цепей имеет повреждения. Но не всегда репарация способна восстановить первоначальную структуру ДНК и процесс репликации происходит с поврежденной цепи ДНК. В этом случае происходит наследование повреждений - мутация.

 

ДНК-полимеразы катализируют перенос дезоксирибонуклеотидных фрагментов от АТФ, ГТФ, ЦДФ, ТДФ на гидроксигруппу растущей или подлежащей регенерации цепи ДНК. Т. е. ДНК-полимеразы относятся к классу трансфераз. Раскручивание двунитевой спирали ДНК для доступа к ней ДНК-полимераз осуществляется двумя ферментами: геликазой и ДНК-топоизомеразой.

 

Кроме репликации, репарации и мутации ДНК может подвергаться гомологичной рекомбинации. Две близкие по своей первичной структуре молекулы ДНК, расположенные рядом объединяются в четырехнитевую структуру. При этом соседние участки обмениваются фрагментами. Рекомбинация не создает новых генов, но в результате этого процесса возникают новые комбинации признаков, которые могут оказаться весьма существенными при естественном отборе.

 

ДНК программирует работу ферментов РНК-полимераз, которые катализируют синтез новых молекул РНК из нуклеотидов с последовательностью, комплементарной одной из цепей программирующей ДНК. Этот процесс называют транскрипцией (считывание). Конечным итогом является образование информационных, рибосомных и транспортных РНК. Образованная цепь РНК - первичный транскрипт это еще не готовая РНК и она подвергается дополнительной серии превращений - процессингу (отщеплению одного или нескольких нуклеотидов или наоборот присоединению, но уже без информации с ДНК). Синтез РНК начинается со вполне определенных участков ДНК и во вполне определенное время. Для этого на ДНК имеются участки к которым присоединяются РНК-полимеразы и регуляторные молекулы. Эти участки не подвергаются считыванию и называются нетранскрибируемыми. 

 

Матричный биосинтез РНК (транскрипция) осуществляется при участии ферментов РНК-полимераз. Этот фермент катализирует такой же тип реакции как и ДНК-полимераза (перенос нуклеозид-трифосфата на цепь РНК), но только вместо субстрата ТДФ используется УТФ. Матрицей при транскрипции является двунитевая ДНК. Вблизи активного центра РНК-полимеразы двунитевая спираль раскручивается и фермент составляет цепь РНК по считываемой информации с нити ДНК. РНК составляется по принципу комплементарности с тем отличием, что вместо тимина используется урацил и нуклеозиды, которые содержат не дезоксирибозу, а рибозу.

 

Инициация проходит на строго определенном участке матрицы ДНК, он называется промотор, и именно с ним происходит специфическое взаимодействие активного центра РНК-полимеразы. После чего начинается синтез цепи РНК. ДНК содержит много таких промоторов и при изменении условий РНК-полимереза может присоединяеться к к другому промотору. Так, при повышении температуры на 2,0-3,0 °С выше физиологического уровня РНК-полимераза присоединяется к промотору, с которого начинается считывание информации необходимой для синтеза специальных защитных белков - БТШ.

 

Вновь синтезированная РНК еще не готова к выполнению своей функции и подвергается ряду превращений - процессингу. В нем принимают участие многие ферменты. Так, часто цепь РНК необходимо разрезать на несколько более коротких или подровнять концы, удалив лишние нуклеотиды - это осуществляют РНК-азы. Процесс транскрипции является точкой приложения многих биологически активных веществ, например антибиотиков и токсинов. Так, антибиотик рифампицин блокирует действие РНК-полимераз прокариот, а токсин бледной поганки - -аманитин - РНК-полимеразу эукариот. Это подавляет синтез мРНК для многих жизненно важных белков.

 

Биосинтез белка согласно информации на РНК называется трансляцией (передачей). Он происходит на сложных надмолекулярных структурах - рибосомах, которые построены из рибосомных РНК и белков. АК для сборки новых полипептидных цепей поступают к рибосомам при участии тРНК, каждая из которых связывает по одной АК. Сборка полипептидной цепи осуществляется по информации, содержащейся на мРНК. В цепи мРНК информация о каждой АК записана в виде комбинации из трех нуклеотидов (например, УУУ или УУЦ- фенилаланин, АУГ-метионин). Такие тринуклеотиды называются кодонами. На рибосомах происходит взаимодействие кодона мРНК с антикодоном тРНК. Антикодон тРНК - это тоже тринуклеотид, а сама тРНК имеет вид кленового листа (или креста). На малой субъединице рибосомы расположен участок, на котором взаимодействуют кодон мРНК с антикодоном тРНК - это декодирующий участок. Инициация синтеза полипептидной цепи начинается со взаимодействия между двумя остатками тРНК один из которых несет на себе АК метионин (с нее обычно все и начинается). Отобраная АК переносится от одной тРНК на тРНТ с которой и начинается синтез белковой цепи. Участок рибосомы, на котором происходит этот перенос содержит фермент пептидилтрансферазу.  Он локализован на большой субъединице рибосомы. Молекула тРНК располагается одновременно на двух субъединицах. К начальной молекуле тРНК (с метионином) постепенно присоединяются различные АК посредством пептидной связи, пока на мРНК не встретится участок терминации. На этом синтез полипептида заканчивается.

 

Рибосомы, как и РНК-полимеразы, являются точками приложения действия ряда антибиотиков, так стрептомицин связывается с малой субъединицей рибосомы прокариот, хлорамфинекол - с большой вблизи активного центра пептидилтрансферазы. При этом тормозится синтез белка бактерий и не изменяется у животных.

Репара́ции (от лат. reparatio — восстановление) — форма материальной ответственности субъекта международного права за ущерб, причиненный в результате совершенного им международного правонарушения другому субъекту международного права, в частности, возмещение государством в силу мирного договора или иных международных актов ущерба, причинённого им государствам, подвергшимся нападению. Объём и характер репараций должны определяться в соответствии с нанесённым материальным ущербом (принцип соразмерности). Выплата репарации может осуществляться в виде денежной или другой материальной компенсации или в виде одновременной реституции и компенсации убытков.

ТРАНСЛЯЦИЯ (от лат. translatio-передача), программируемый генами процесс синтеза белка. Посредством трансляции осуществляется реализация генетич. информации нуклеиновых к-т (см. Генетический код).

По совр. представлениям, исходный ген в виде ДНК непосредственно транслироваться не может; для трансляции он должен быть сперва транскрибирован-переписан (см.Транскрипция)-в форме молекул матричных рибонуклеиновых кислот (мРНК) и именно последняя связывается с рибосомой и транслируется.

В ходе трансляции последовательность нуклеотидов мРНК определяет последовательность остатков аминокислот в синтезируемом полипептиде; происходит как бы перевод с языкануклеотидной последовательности гена на язык аминокислотной последовательности белка. Считается, что аминокислотная последовательность синтезируемого на рибосомеполипептида однозначно задает пространственную структуру белка через процесс сворачивания (фолдинга), идущего одновременно с трансляцией (котрансляционное сворачивание) или по ее завершении (посттрансляционное сворачивание). Кроме того, в формировании конечной структуры функцион. белка могут принимать участие процессы ко- и посттрансляционных модификаций (см. Модификация белков).

Трансляция каждой молекулы мРНК рибосомой разделяется на три четкие последоват. стадии-инициацию, элонгацию полипептида (собственно трансляция) и терминацию (см. рис. в ст. Рибосома). Цепь мРНК транслируется (считывается) по направлению от 5'-конца к 3'-концу (см. Нуклеиновые кислоты). Полипептид элонгируется (растет) от N-конца к С-концу.

Трансляция начинается со строго фиксир. точки в цепи мРНК (а отнюдь не с начала самой цепи РНК). Точный выбор рибосомой стартовой точки определяет не только первую (N-концевую) аминокислоту в синтезируемом полипептиде, но и всю последующую разбивку нуклеотидной последовательности мРНК на триплеты (кодоны), т.е. правильную фазу (рамку) считывания, и, соотв., правильный набор остатков аминокислот в синтезируемом полипептиде. Для этого существует спец. механизм инициации трансляции, в к-ром принимают участие: инициаторный кодон и предшествующая ему последовательность мРНК, малая субчастица рибосомы, инициаторная метионил-тРНК [N-формилметионил-тРНКр у прокариот (бактерии и синезеленые водоросли) и метионил-тРНКр у эукариот (все остальные организмы); тРНК-сокр. обозначение транспортных рибонуклеиновых кислот], набор белковых факторов инициации (IF-1, IF-2 и IF-3 у прокариот и около десятка факторов-от eIF-1 до eIF-4F и eIF-5-y эукариот) и гуанозинтрифосфат (ГТФ), а также АТФ у эукариот.

Перед инициацией рибосома должна диссоциировать на составляющие ее субчастицы-малую (30S у прокариот и 40S у эукариот) и большую (50S у прокариот и 60S у эукариот):

70S : 30S; + 50S 80S : 40S;+60S

Своб. малая субчастица связывает на себе часть факторов инициации (кстати, способствующих вышеуказанной диссоциации). При участии фактора инициации IF-2 или eIF-2 и ГТФ в комплекс с малой субчастицей входит инициаторная (формил)метионил-тРНКр (F в нижнем индексе обозначает, что данная тРНК является инициаторной).

У прокариот малая субчастица рибосомы имеет сродство к короткой полипуриновой (см. Пуриновые основания) последовательности мРНК (напр., GAGG; G и А-соотв. остаткигуанозина и аденозина), находящейся за неск. нуклеотидов перед инициаторным кодовом AUG (реже GUG; U-остаток уридина), так что рибосомная 30S частица фиксирует эту предынициаторную последовательность (наз. также последовательностью Шайна-Дальгарно), а антико-дон инициаторной тРНК взаимод. с инициаторным кодо-ном.

У эукариот рибосомная 40S частица, несущая ряд факторов инициации и метионил-тРНКр, связывается преимущественно с 5'-концом цепи мРНК (как правило, кэпирован-ным), а затем скользит по цепи в направлении к 3'-концу без трансляции, потребляя АТФ, пока не натолкнется на триплет AUG, спаривающийся с антикодоном тРНКр и служащий инициаторным кодовом.

Т. обр., в обоих случаях устанавливается стартовая точка трансляции (точка отсчета триплетов). Далее фиксированная на ини-циаторном кодоне малая рибосомная субчастица присоединяет к себе большую рибосомную субчастицу; это событие сопровождается гидролизом ГТФ на факторе инициации IF-2 или eIF-2, уходом этого фактора и гуанозиндифосфата (ГДФ) с рибосомной частицы. Теперь на ишщиаторном кодоне находится полная (70S или 80S) рибосома, готовая воспринять аминоацил-тРНК (Аа-тРНК), соответствующую следующим нуклеотидным триплетам мРНК (рис. 1).

Элонгационный цикл начинается с поступления в рибосому Аа-тРНК при наличии там инициаторной (формил)ме-тионил-тРНКр (сразу после вышеописанной инициации) или пептидил-тРНК (если рассматривать любой промежут. шаг стадии элонгации) (рис. 2). Предварительно вне рибосомы Аа-тРНК взаимод. со спец. белком, наз. фактором элонгации Tu(EF-Tu) у прокариот или eEF-1 у эукариот; для взаимод. необходимо участие в этом комплексе молекулы ГТФ: Аа-тРНК + EF-Tu(eEF-l) + ГТФ :! Аа-тРНК · EF-Tu(eEF-l)·ГТФ

На самом деле, ввиду избытка белка ЕР-Тu или eEF-1 в клетке, все Аа-тРНК, за исключением инициаторной, присутствуют в цитоплазме в виде таких тройственных нуклеопротеидных комплексов. Комплекс поступает в рибосому и связывается с ее т. наз. А-участком, если там присутствует вакантный кодон, комплементарный антико-дону Аа-тРНК. При этом др. тРНК-связывающий участок рибосомы (Р-участок) занят либо инициаторной (фор-мил)метионил-тРНКр (в первом элонгационном цикле), либо пептидил-тРНК (во всех последующих элонгационных циклах).

Связывание тройственного комплекса с А-участком рибосомы индуцирует его ГТФ-азную активность, и ГТФ, входящий в комплекс, гидролизуется:

ГТФ + Н2О : ГДФ + Н3РО4

В результате этого EF-Tu (eEF-1) теряет высокое сродство к рибосоме и к Аа-тРНК и вместе с ГДФ покидает рибосому.

Теперь Аа-тРНК оказывается в А-участке рибосомы без своего белкового партнера, бок о бок с присутствующей в Р-участке инициаторной (формил)метионил-тРНКр (или пептидил-тРНК). Аминокислотный остаток Аа-тРНК и сложноэфирная группа (формил)метионил-тРНКр (или пеп-тидил-тРНК) локализуется в пептидил-трансферазном центре рибосомы.Аминогруппа аминокислотного остатка атакует карбонил сложноэфирной группы, в результате чего происходит р-ция транспептидации: (формил)метионильный (или пептидильный) остаток переносится на аминогруппу Аа-тРНК, с образованием пептидной связи, а инициаторная тРНКF (или тРНК, с к-рой был связан пептид) оказывается деацилированной (рис. 3).

Непосредственно после р-ции транспептидации деацили-рованная тРНК занимает Р-участок рибосомы, а новообразованная пептидил-тРНК-А-участок (см. рис. 2). Завершающая фаза цикла наз. транслокацией. Она катализируется крупным мономерным белком, обозначаемым как фактор элонгации G (EF-G) у прокариот или eEF-2 у эукариот, с использованием молекулы ГТФ.

Фактор EF-G(eEF-2), ассоциированный с ГТФ, взаимод. с претранслокационной рибосомой (пептидил-тРНК в А-участке, деацшшрованная тРНК в Р-участке), и в образующемся комплексе происходит удаление деацилирован-ной тРНК из Р-участка, переход пептидил-тРНК из А-участ-ка в Р-участок и передвижение вместе с ней кодона мРНК из А-участка в Р-участок; в вакантном А-участке устанавливается очередной кодон мРНК. В образовавшемся посттранс-локационном комплексе индуцируется ГТФ-азная активность, ГТФ гидролизуется до ГДФ и Н3РО4, в результате чего EF-G(eEF-2) с ГДФ теряет сродство к рибосоме и освобождается. Цикл завершен.

Теперь рибосома способна воспринять на свой вакантный А-участок с очередным кодовом новую, соответствующую этому кодону Аа-тРНК в комплексе с EF-Tu (eEF-1) и ГТФ. Осуществляется следующий цикл элонгации. Трансляция мРНК состоит в повторении таких циклов, в каждом из к-рых прочитывается один триплет (кодонмРНК, синтезируется однапептидная связь и гидролизуются две молекулы ГТФ.

Элонгация полипептида продолжается до тех пор, пока рибосома не натолкнется на один из нуклеотидных триплетов, не кодирующих аминокислоту, т.е. не комплементарныхантикодону какой-либо тРНК. Это триплеты UAA, UAG и UGA, наз. терминаторными или стопкодонами. Тогда включается механизм терминации: терминаторный триплет, оказавшийся в А-участке рибосомы, узнается не молекулой тРНК, а спец. белком (фактором терминации RF) с участием ГТФ; фактор терминации, связавшийся с рибосомой, индуцирует гидролизсложноэфирной связи между полипептидом и тРНК в молекуле пептидил-тРНК, расположенной в Р-участке рибосомы.

Гидролиз катализируется пептидил-трансферазным центром рибосомы, но в данном случае сложноэфирный карбо-нил атакуется не аминогруппой Аа-тРНК, как при транспептидации, а молекулой воды. Готовый полипептид освобождается из рибосомы, а рибосома подвергается действию дополнит. факторов, лишается последней деацилированной тРНК, диссоциирует (при участии факторов инициации) на субчастицы и покидает мРНК. Своб. рибосомные субчастицы опять готовы инициировать трансляцию новой цепи мРНК или нового цистрона (кодируемого участка) на цепи той же полицистронной мРНК.

Реализация генетич. информации через трансляцию подвержена ошибкам. Ошибки в трансляции могут быть двоякого рода. Ошибки первого рода-это т. наз. ложное считываниекодона, когда очередная Аа-тРНК при поступлении в А-участок рибосомы связывается не соответствующим ей коданом. Определенная вероятность такого захвата (оцениваемая величинами порядка 10-3-10-4) обычно характерна для тРНК, несущих антикодон, частично комплементарный кодону. Результатом является замена правильного аминокислотного остатка на неправильный в соответствующем положении полипептидной цепи. Вариантом этого рода ошибок является связывание, напр. триптофанил-тРНК, с терминаторным кодо-ном в А-участке и, как следствие,-продолжение элонгации за пределы терминаторного кодона, т. е. синтез удлиненного полипептида. Уровень ошибок зависит как от ряда внеш. факторов (напр., возрастает при голодании или в присут. этанола), так и от структуры самой рибосомы. В частности, известны мутации рибосомных белков, увеличивающие или уменьшающие, избирательность рибосомы при поступлении Аа-тРНК в А-участок и соотв. уменьшающие или увеличивающие уровень опшбок этого рода.

Ошибки др. рода-это т. наз. сдвиг рамки считывания мРНК, когда при транслокации цепь мРНК передвигается не на три нуклеотида, а на два или на четыре. Результаты такой ошибки более серьезны: вся последующая кодирующая последовательность триплетов мРНК окажется не в фазе, так что синтезируемая полипептидная цепь не будет иметь ничего общего с нормальным продуктом.

Экспрессия генов во всех живых организмах находится под контролем разнообразных регуляторных механизмов. Регуляция генной активности на уровне транскрипции является наиб. изученной. Менее изучена, хотя и исключительно важна, особенно у высших многоклеточных организмов, регуляция на уровне трансляции. Матричная РНК, поступившая вцитоплазму, может в течение определенного времени вовсе не вовлекаться в синтез белка; разл. мРНК, вовлеченные в синтез белка, могут транслироваться с очень разной скоростью; транслируемая мРНК под действием определенных регуляторных факторов может оказаться нетранслируемой.

Ярким примером такого рода регуляторных переключений являются события, происходящие в ответ на тепловой шок. Процессы клеточной дифференцировки также сопровождаются включением в трансляцию новых мРНК, иногда накопленных в цитоплазме заранее, а также изменением скоростей трансляции и выключением нек-рых мРНК из трансляции.Регуляция синтеза белков на уровне трансляции играет важную роль у всех организмов, включая бактерии, в координации продукции разл. белков в клетке и поддержании их правильных стехиометрич. соотношений (это особенно касается поддержания стехиометрии синтеза субъединиц сложных белков).

Регуляция трансляции может осуществляться на всех трех стадиях -инициации, элонгации и терминации. Она м. б. тотальной, когда ослабление или усиление трансляции касается всех мРНК, или избирательной, если имеет место специфич. подавление или стимуляция использования данной мРНК для трансляции.

Примером механизма тотального подавления инициации трансляции [у эукариот в ответ на недостаток тема или железа в ретикулоцитах (вид эритроцитов), на совместное действиеинтерферона и вирусной двухцепочечной РНК в ряде др. животных клеток, на увеличение уровня окисленного глута-тиона и на нек-рые др. неблагоприятные воздействия] является индукция или активация спец. протеинкиназы, фосфо-рилирующей фактор инициации 2 (сIF-2). В результате фосфорилирования eIF-2 не инактивируется, но вступает в более тесную ассоциацию с другим, помогающим ему фактором инициации (eIF-2B), и тем самым снижает оборачиваемости eIF-2 в процессе инициации.

Избирательная регуляция инициации базируется на трех осн. механизмах: 1) конкуренции разл. мРНК, обладающих разной "силой" их инициаторных нуклеотидных последовательностей (как правило, последовательностей, предшествующих инициаторному кодону), за связывание с малой рибосомной субчастицей и факторами инициации; 2)изме-нениях пространств. структуры инициаторного района мРНК, от к-рой зависит стерич. доступность инициаторной последовательности для взаимод. с малой рибосомной субчастицей и факторами инициации; 3) действии спец. белков (репрессоров трансляции), специфически связывающихся с инициа-торными районами определенных мРНК и делающих их недоступными для инициации.

Скорость трансляции в процессе элонгации также может подвергаться регуляции, как тотальной, так и избирательной. Макс. скорости чтения мРНК рибосомами в отсутствие всяких ограничивающих факторов у прокариот и эукариот составляют соотв. 50 и 30 нуклеотидных остатков в секунду (при 37 °С); регуляторные воздействия могут уменьшить ее до 3-10нуклеотидов в секунду.

Тотальная регуляция скорости элонгации у эукариот может осуществляться через фосфорилирование фактора элонгации 2 (EF-2). Показано, что существует спец. Са2+ -калмо-дулинзависимая протеинкиназа (EF-2-киназа), к-рая может активироваться при разл. физиол. воздействиях и фосфори-лировать ту или иную часть EF-2 в клетке; фосфорилиро-ванный EF-2 теряет способность эффективно катализировать транслокацию, и элонгация на всех мРНК замедляется. Фосфатазы или их активация легко обращают этот эффект.