
- •А.Н. Голицын
- •Учебник
- •Глава 1. Промышленная экология 13
- •Глава 2. Процессы и аппараты
- •Глава 3. Мониторинг загрязнения природной среды 145
- •3.4.9. Наблюдения за загрязнением
- •3.6.6. Обобщение результатов наблюдений
- •Глава 4. Приборы измерения и контроля
- •Глава 1 промышленная экология
- •1.1. Общие закономерности производственных процессов
- •1.2. Экологически чистые производства
- •1.3. Источники воздействия на окружающую среду
- •1.4. Охрана атмосферного воздуха на предприятиях
- •1.5. Рациональное использование и охрана от загрязнения воды на предприятиях
- •1.6. Твердые отходы производства
- •1.7. Производственный экологический контроль
- •1.8. Территориально-производственные комплексы
- •1.9. Промышленные экосистемы и эколого-промышленные парки
- •Глава 2
- •2.1. Методики расчета аппаратов очистки газовых выбросов
- •2.1.1. Расчет циклона
- •2.1.2. Расчет аппаратов мокрой очистки газов от пыли
- •2.1.2.1. Расчет пенного пылеулавливателя
- •2.1.2.2. Расчет скруббера Вентури
- •2.2. Методики расчета аппаратов очистки сточных вод
- •2.2.1. Расчет отстойника
- •2.2.2. Расчет фильтров для суспензий
- •2.2.3. Расчет выпарного аппарата
- •2.3. Методика расчета теплообменных аппаратов
- •Глава 3
- •3.1. Мониторинг как многоцелевая информационная система
- •3.2. Организация системы мониторинга окружающей природной среды в России
- •3.2.1. Единая государственная система экологического мониторинга
- •3.2.2. Государственная служба наблюдения за состоянием природной среды
- •3.3. Общие сведения о методах наблюдений
- •3.3.1. Контактные методы наблюдений
- •3.3.2. Дистанционные методы наблюдений
- •3.3.3. Биологические методы наблюдений
- •3.4. Наблюдения за загрязнением атмосферного воздуха
- •3.4.1. Организация сети наблюдений за загрязнением атмосферного воздуха
- •3.4.2. Выбор места контроля загрязнения и его источника
- •3.4.3. Виды проб
- •3.4.4. Отбор проб воздуха
- •3.4.5. Стабилизация и хранение проб воздуха
- •3.4.6. Проведение наблюдений за загрязнением атмосферы на стационарных постах
- •3.4.7. Проведение наблюдений за загрязнением атмосферы на маршрутных постах
- •3.4.8. Проведение наблюдений за загрязнением атмосферы на передвижных (подфакельных) постах
- •3.4.9. Наблюдения за загрязнением атмосферного воздуха автотранспортом
- •3.4.10. Наблюдения за радиоактивным загрязнением атмосферного воздуха
- •3.4.11. Мониторинг загрязнения снежного покрова
- •3.4.12. Наблюдения за фоновым состоянием атмосферы
- •3.4.13. Обобщение результатов наблюдений за уровнем загрязнения атмосферы
- •3.5. Наблюдения за загрязнением природных вод
- •3.5.1. Формирование сети пунктов контроля качества поверхностных вод
- •Показателям
- •3.5.2. Отбор проб воды
- •3.5.3. Отбор проб донных отложений
- •3.5.4. Наблюдения за загрязнением морских вод
- •3.5.5. Наблюдения за качеством природных вод с помощью комплексных лабораторий
- •3.5.6. Стабилизация и хранение проб воды
- •3.5.7. Наблюдения за радиоактивным загрязнением природных вод
- •3.5.8. Обобщение результатов наблюдений за загрязнением природных вод
- •3.6. Наблюдения за загрязнением почв
- •3.6.1. Обобщенная программа мониторинга загрязнения почв
- •3.6.2. Отбор, стабилизация и хранение проб почвы
- •3.6.3. Контроль загрязнения почв пестицидами
- •3.6.4. Контроль загрязнения почв отходами промышленного характера
- •3.6.5. Контроль радиоактивного загрязнения почв
- •3.6.6. Обобщение результатов наблюдений за загрязнением почв
- •3.7. Оценка состояния загрязнения окружающей среды
- •3.7.1. Критерии качества окружающей среды
- •3.7.2. Оценка загрязнения атмосферного воздуха
- •3.7.3. Оценка загрязнения поверхностных вод
- •3.7.4. Нормирование выбросов (сбросов)
- •3.7.5. Оценка загрязнения почв
- •3.7.6. Оценка пространственных масштабов загрязнения
- •3.8. Основы прогнозирования загрязнения окружающей природной среды
- •3.8.1. Основные виды прогнозов и методы прогнозирования
- •3.8.2. Прогноз загрязнения атмосферы
- •3.8.3. Прогноз загрязнения водных ресурсов
- •Глава 4
- •4.1. Сведения по метрологии
- •4.2. Приборы 1-го уровня
- •Газоанализатор уг-2
- •Нитратомер эбик
- •Дозиметр «Белла»
- •4.3. Приборы 2-го уровня
- •Нефелометр нфм
- •Флуориметр эф-зма
- •Рефрактометр ирф-22
- •Жидкостный хроматограф
- •Газоанализатор гиам-21
- •4.4. Приборы 3-го уровня
- •Приложение 2
- •Приложение 3
- •Литература
- •Учебник
- •127422, Москва, ул. Тимирязевская, д. 38/25.
- •600000, Г. Владимир, Октябрьский проспект, д. 7.
- •«Основы экологии и рационального природопользования»
- •107140, Москва, a/fo 140 «Книги по почте»
- •113452, Москва, Симферопольский бульвар, д. 25, к. 2 (3 этаж),
3.3. Общие сведения о методах наблюдений
Для получения объективной информации о состоянии и уровне загрязнения объектов окружающей среды необходимо располагать надежными методами анализа. Эф-
фективность любого метода оценивается совокупностью показателей: селективностью и чувствительностью определения, воспроизводимостью получаемых результатов, экспрессностью выполнения анализа. Методы должны быть применимы в широком диапазоне концентраций загрязняющих веществ, включая их следовые количества в незагрязненных объектах фоновых районов.
В системе мониторинга проводят наблюдения с использованием контактных и дистанционных методов. Контактные наблюдения подразумевают непосредственный контакт с изучаемым объектом окружающей среды: взятие пробы оператором, ее подачу на пробоподготовку или в измерительный прибор либо перемещение измерительного прибора в изучаемой среде (не требуется взятие пробы оператором). Дистанционные наблюдения подразумевают наблюдения за удаленными от места проведения измерений объектами.
3.3.1. Контактные методы наблюдений
В настоящее время определение содержания загрязняющих веществ в объектах окружающей среды осуществляется различными методами, которые можно разделить на три большие группы: электрохимические, оптические и хроматографические.
Электрохимические методы включают в основном кон-дуктометрию, кулонометрию, полярографию.
Кондуктометрический метод анализа основан на регистрации изменений электропроводности раствора, возникающих в результате поглощения газовой смеси. Этот метод не требует применения сложной аппаратуры, приборы обладают высокой чувствительностью, быстродействием и компактностью. Недостатком метода является его неселективность: все растворяющиеся в реактиве с образованием ионов газы сильно влияют на электропроводность электролита. Кондуктометрические анализаторы используют, например, в мониторинге атмосферного воздуха.
Кулонометртеский метод состоит в непрерывном автоматическом титровании вещества реагентом, электрохимически генерируемым на одном из электродов в реакционной среде. Количество электричества, затраченного на генерацию титрующего агента, служит мерой содержания определяемого вещества в реакционной среде. Количество электричества определяется как произведение измеряемого тока на время генерации до точки эквивалентности.
Кулонометрический метод анализа обладает высокой чувствительностью и широким динамическим диапазоном. К недостаткам кулонометрических приборов можно отнести низкую селективность и необходимость периодической смены электролита. Примером таких приборов являются газоанализаторы ГКП-1 и «Атмосфера-1», служащие для определения S02, H2S, 03, Cl2 на уровне ПДК и ниже.
Полярографический метод основан на восстановлении анализируемого соединения на ртутном электроде; его применяют, как правило, при анализе следовых количеств веществ. Полярографы ППТ-1, ПУ-1, ПЛ-2, ПА-3, ПО-5122 используют для определения концентраций органических и неорганических соединений с минимальным содержанием в пробе от 0,05 до 1 мкг/мл.
Оптические методы анализа включают в себя абсорбционные и эмиссионные методы.
Абсорбционные методы основаны на способности веществ избирательно поглощать лучистую энергию Солнца в характерных участках спектрального диапазона и, в свою очередь, подразделяются на недисперсионные и дисперсионные. Недисперсионные методы основаны на выделении нужной спектральной области без разложения излучения в спектр, а дисперсионные — на выделении нужной спектральной области путем разложения излучения в спектр.
Фотоколориметрический метод основан на измерении интенсивности окраски цветных соединений, образующихся при взаимодействии определяемого компонента со вспомогательным реагентом. Метод обладает высокой
чувствительностью и хорошей селективностью, к его недостаткам можно отнести невысокую точность и большую погрешность измерения.
Фотоколориметры марок ФЭК-М, ФЭК-Н-5, ФК-110 и другие используют для определения содержания в растворах органических и неорганических соединений. Чувствительность определения зависит от природы вещества и составляет от 0,04 до 20 мкг/мл пробы.
Спектрофотометрические методы основаны на тех же принципах, что и фотоколориметрические, но в спектрофотометрах используют поглощение монохроматического света. Для анализа жидких сред применяют спектрофотометры марок СФ-4, СФД-2, СФ-2М, СФ9, СФ-10, СФ-14, СФ-19, С-605 и др. Чувствительность определения органических и неорганических соединений находится на уровне 0,08—20 мкг/мл пробы.
Для определения количества веществ, находящихся в растворах во взвешенном состоянии, используют турбидиметрический метод, основанный на измерении интенсивности света, прошедшего через контролируемый раствор пробы. Если измеряется не прошедший через суспензию свет, а рассеянный, то такой метод анализа называют нефелометрическим. Он особенно чувствителен при анализе сильно разбавленных суспензий.
Еще одним абсорбционным аналитическим методом является оптико-акустический — весьма перспективный метод определения многочисленных органических загрязняющих веществ, поскольку они способны поглощать ИК-излучение, моделированное звуковой частотой. В результате такого поглощения молекулы органических загрязнителей начинают испускать звук на частоте модуляции; механизм испускания состоит в том, что газ в рабочей кювете разогревается под действием инфракрасного излучения и его давление начинает колебаться с частотой модуляции (звука). Измеряя интенсивность этого звука, удается измерить и концентрацию вещества, поглотившего ИК-излучение. Зная частоту последнего, можно уста-
165
новить тип вещества. Оптико-акустический метод используют в газоанализаторах ГИАМ-1, ИКРП-450У. Таким методом определяют содержание в пробах органических веществ. Он характеризуется высокой избирательностью и чувствительностью для сильно флуоресцирующих веществ и может быть использован в качестве метода дистанционных наблюдений за загрязнением атмосферного воздуха.
Эмиссионные методы основаны на измерении интенсивности излучения анализируемой газовой смеси. Исследуемые молекулы приводят в состояние оптического возбуждения, а затем регистрируют интенсивность люминесценции или флуоресценции — испускания возбужденными молекулами квантов света при возвращении в основное состояние.
При люминесценции возбуждение осуществляют при нормальной температуре в результате химических реакций (хемилюминесценция), протекания электрического тока (электролюминесценция) или поглощения световой энергии (флуоресценция). Последний метод характеризуется высокой избирательностью и чувствительностью для сильно флуоресцирующих веществ и может быть использован в качестве метода дистанционных наблюдений за загрязнением атмосферного воздуха.
Хроматографические методы относят к гибридным, или комбинированным, так как они основаны на комбинировании как минимум двух разнородных принципов: предварительного разделения смеси веществ и последующего детектирования каждого из веществ по очереди. Чем четче производится разделение компонентов смеси, тем более мягкие требования предъявляют к селективности детектора. Все известные детекторы делят на универсальные (абсолютно неселективные) и селективные, причем степень селективности может быть разной.
Масс-спектрометрический метод заключается в ионизации газообразной пробы электронной бомбардировкой, после чего образующиеся ионы подвергаются воздействию магнитного поля. В зависимости от массы и заряда
166
ионы в поле отклоняются с различной скоростью и соответствующим образом разделяются. Достоинствами метода являются малый объем пробы и высокая избирательность. К недостаткам можно отнести дороговизну. Метод применяют для определения диоксинов, полихлорирован-ных бифенилов и др.
Газохроматографический метод основан на селективном разделении соединений между двумя несмешиваю-щимися фазами, одна из которых неподвижна (жидкость, твердое тело), а другая подвижна (инертный газ-носитель). Метод позволяет определять ничтожно малые количества веществ, не обладающих специфическими реакциями, анализировать смеси из десятков и сотен компонентов с близкими свойствами. Для проведения анализа используют хроматографы ЛМ-8МД5, ЛХМ-80, «Газо-хром-1109», «Газохром-3101», «Цвет» (модели 101—110), «Сигма-1» и др. Недостатком метода является то, что для придания летучести примесям необходимо использовать повышенные (до 350 °С) температуры.
Когда летучесть веществ мала, а полярность велика, применяют методы жидкостной и высокоэффективной жидкостной хроматографии, которую можно использовать даже для разделения неорганических веществ и веществ с крайне низким парциальным давлением собственных паров. В отличие от газовой хроматографии анализ проводят при комнатной температуре.