
- •33.Теплообмен при конденсации пара, общие представления.
- •35. Теплоотдача при плёночной конденсации пара.
- •36. Теплообменные аппараты, и определение среднего температурного напора.
- •37. Теплоотдача при конденсации пара в трубах.
- •38. Теплообменные аппараты, расчёт коэффициента теплопередачи.
- •39. Теплоотдача при капельной конденсации пара.
- •40,46.Теплообменные аппараты, расчёт конечных температур рабочих сред.
- •41. Законы теплового излучения.
- •42. Гидромеханический расчёт, определение гидравлического сопротивления элементов теплообменных аппаратов.
- •43. Лучистый теплообмен между телами.
- •44. Теплообменные аппараты , поверочный расчёт , понятие о водяных эквивалентах.
- •45,47. Тепловое излучение газов.
- •49. Теплообмен и теплопередача.
45,47. Тепловое излучение газов.
Газы также обладают способностью испускать и поглощать лучистую энергию, но для разных газов эта способность различна. Для одно- и двухатомных газов, в частности для азота (N2), кислорода (Ог) и водорода (Н2), она ничтожна; практически эти газы для тепловых лучей прозрачны — диатермичны. Значительной способностью излучать и поглощать лучистую энергию обладают лишь многоатомные газы, в частности углекислота (СО2), водяной пар (Н2О), сернистый ангидрид (SO2), аммиак (NH3) и др. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар; эти газы образуются при горении топлива. Процессы теплового излучения и поглощения газов имеют ряд особенностей по сравнению с тепловым излучением твердых тел. Твердые тела имеют обычно сплошные спектры излучения: они излучают (и поглощают) лучистую энергию всех длин волн от 0 до бесконечности. Газы же постоянно излучают и поглощают энергию лишь в определенных интервалах длин волн ∆λ, так называемых полосах, расположенных в различных частях спектра; для лучей других длин волн, вне этих полос, газы прозрачны, и их энергия излучения равна нулю. Таким образом, излучение и поглощение газов имеет избирательный (селективный) характер. Далее процессы испускания и поглощения лучистой энергии в твердых (непрозрачных) телах происходят на поверхности. В газах же излучение и поглощение всегда протекают в объеме. Селективный спектр и объемный характер излучения определяют особенности процесса лучистого теплообмена в газах. Чтобы наглядно представить себе механизм этого процесса, удобно рассматривать излучение как поток частиц фотонов или квантов, движущихся по различным направлениям пространства со скоростью света с и обладающих различной энергией hv.
При прохождении фотонов через объем газа некоторая их часть поглощается молекулами газа. Энергия фотонов передается молекулам, вследствие чего газ нагревается, происходит поглощение лучистой энергии в объеме газа. При этом поглощаются только те фотоны, энергия которых hv отвечает частотам v (или, что то же, длинам волн λ = c/v), соответствующим полосам поглощения газа. Фотоны других энергий пролетают через газовый объем без поглощения.
Одновременно в объеме газа идет и другой процесс. Молекулы газа периодически теряют небольшую часть своей тепловой энергии, которая излучается в окружающее пространство в виде фотонов. Иначе говоря, в объеме газа всегда протекает также процесс «рождения» фотонов, причем последний имеет тем большую интенсивность, чем выше температура газа. Этот процесс определяет собственное излучение газового объема. Фотоны, возникающие в объеме, имеют энергию, которая соответствует полосам излучения газа. Вследствие хаотического характера теплового движения частиц газа собственное излучение газового объема имеет обычно характер, близкий к изотропному: каждый элементарный объем газа излучает фотоны по всем направлениям с одинаковой интенсивностью.
Результирующий поток излучения определяется совместным влиянием обоих эффектов: поглощения и собственного излучения фотонов газовым объемом. Изложенная картина показывает, что для количественного описания явления нужно последовательно рассмотреть процессы переноса фотонов по разным направлениям пространства и учесть при этом избирательный характер спектра их поглощения и испускания. Для этого вводятся следующие понятия. Интенсивность излучения. определяет поток энергии излучения, пересекающий единичную площадку и распространяющийся в направлении нормали к ее поверхности внутри элементарного телесного угла. J=∫Jvdv Коэффициент поглощения. Для характеристики объемного характера поглощения газов применяется спектральный коэффициент поглощения, показывающий относительное уменьшение спектральной интенсивности излучения на единице длины пути луча. av=-1/Jv*dJv/dl .