
- •1.Наука об истории развития Земли. Предмет геологии, ее задачи и методы.
- •2.Строение Земли и происхождение Земли.
- •3.Эндогенные процессы. Землетрясения и вулканы. Горообразовательные процессы, колебания земной коры.
- •Экзогенные процессы. Виды выветривания горных пород и минералов. Кора выветривания.
- •1) Процессы выветривания,
- •2) Процессы работы внешних динамических сил.
- •5.Геологическая деятельность ледников. Образование ледников, их типы. Вводно-ледниковые отложения.
- •6.Геологическая деятельность подземных вод. Происхождение и классификация подземных вод. Карстовые процессы.
- •7. Геологическая деятельность морей и океанов
- •8 Геологическая деятельность ветра. Эоловые отложения. Формы эолового рельефа. Меры борьбы с ветровой эрозией.
- •9. Геологическая деятельность поверхностных текучих вод. Водная эрозия, меры борьбы с водной эрозией.
- •10 Минералы и их образование. Формы нахождения минералов в природе
- •11.Физические свойства минералов.
- •12. Классы минералов. Свойства сульфидов и галоидов.
- •13 Классы минералов. Свойства оксидов и карбонатов.
- •14. Классы минералов. Свойства фосфатов и силикатов
- •15. Образование магматических горных пород и характеристика основных пород
- •16. Образование осадочных пород и характеристика основных пород.
- •17. Образование метаморфических горных пород и характеристика основных пород.
- •18. История почвоведения, как науки. Создание генетического почвоведения в России. Роль трудов в.В. Докучаева в создании почвоведения.
- •19. Понятие о почве. Почвообразовательный процесс, факторы почвообразования.
- •20. Факторы почвообразования по в,в. Докучаеву. Сущность в формировании основной массы почвы, ее физических и химических свойствах.
- •21. Значение биологического фактора в процессе почвообразования
- •22. Роль климата в почвообразовании. Непосредственное и косвенное влияние климатических явлений на почвообразование.
- •23. Роль рельефа в перераспределении тепла и влаги на земной поверхности и значение этих явлений в почвообразовании.
12. Классы минералов. Свойства сульфидов и галоидов.
Существует много вариантов классификаций минералов. Большинство из них построено по структурно-химическому принципу.
По распространённости минералы можно разделить на породообразующие — составляющие основу большинства горных пород, акцессорные — часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.
Наиболее широко используется классификация по химическому составу и кристаллической структуре. Вещества одного химического типа часто имеют близкую структуру, поэтому минералы сначала делятся на классы по химическому составу, а затем на подклассы по структурным признакам. Сульфиды
На воздухе медленно окисляется:
в зависимости от условий проведения этой реакции образуются побочные продукты: коллоидная сера, полисульфиды калия.
Сульфид калия при поджигании сгорает:
Так как сероводород является слабой кислотой, то сульфид калия разлагается кислотами:
Концентрированные кислоты могут окислять выделяемый сероводород:
При кипячении раствора сульфида калия с серой или сплавления его с серой образуются полисульфиды:
для калия выделены полисульфиды вплоть до n = 6.
При пропускании через раствор сульфида калия избытка сероводорода образуются гидросульфид калия:
Галоиды
или галогены (хим.) — Так, называются четыре элементарных тела, находящихся в седьмой группе периодической системы элементов: фтор F = 19, хлор Cl = 3,5, бром Br = 80 и йод J = 127.
Фтор является трудносжижаемым, а хлор легкосжижаемым газом с удушливым резким запахом. Энергия связи галогенов сверху вниз по ряду изменяется не равномерно. Фтор имеет аномально низкую энергию связи (151 кДж/моль), это объясняется тем, что фтор не имеет d-подуровня и не способен образовывать полуторные связи, в отличие от остальных галогенов (Cl2 243, Br2 199, I2 150,7, At2 117 кДж/моль). От хлора к астату энергия связи постепенно ослабевает, что связано с увеличением атомного радиуса.
Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:
2Al + 3F2 = 2AlF3 + 2989 кДж,
Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) — все реакции при этом сильно экзотермические, например:
Н2 + F2 = 2HF + 547 кДж,
Si + 2F2 = SiF4(г) + 1615 кДж.
При нагревании фтор окисляет все другие галогены по схеме
Hal2 + F2 = 2НalF
где Hal = Cl, Br, I, At, причем в соединениях HalF степени окисления хлора, брома, иода и астата равны +1.
Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:
Хе + F2 = XeF2 + 152 кДж.
Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:
3F2 + ЗН2О = OF2^ + 4HF + Н2О2.