
- •Геомеханика как раздел горной науки.
- •Практическая значимость задач, решаемых геомеханикой.
- •Петрографические особенности горных пород.
- •14. Упругие деформации.
- •15. Пластические деформации.
- •16. Частные случаи ндс.
- •18. Теория наибольших деформаций.
- •23. Проявление горного давления в подготовительных выработках
- •24.Проявление горного давления и его распределение вокруг очистны выработок
- •25. Общее глубинное строение земли
- •26. Тектоническое строение земли и роль глубинных разломов
- •27. Тектонические движения земной коры
- •28. Причины тектонических движений
- •29. Напряженное состояние верхней части земной коры
- •30. Природный поля напряжений
- •31. Напряженное состояние горных пород до проведения в них выработок
- •32. Сейсмические напряжения в массиве горных пород.
- •33. Факторы, определяющие напряженное состояние пород вокруг выработок.
- •34.Распределение напряжений вокруг круглой выработки.
- •35. Тангенциальные напряжения на контуре эллиптической выработки.
- •36. Определение параметров зон хрупкого разрушения пород вокруг выработок.
- •38. Общие сведения о горных ударах и техногенных землятресениях.
- •39. Отнесение месторождений к склонным и опасным по горным ударам.
- •40. Формы проявления горных ударов: горно-тектонические удары, горные удары, микроудары.
- •41. Формы прроявления горных ударов: толчки, стреляния, интенсивное заколообразование, шелушение.
- •43. Понятия сдвижения горных пород и сдвижения земной поверхности.
- •44. Зоны и области сдвижения пород.
- •46.Линейные параметры процесса сдвижения.
- •47.Факторы,влияющие на процесс сдвижения.
- •50.Методы оценки устойчивости обнажений.
- •51.Способы охраны и поддержания горных выработок.
- •52.Напряженное состояние пород в бортах открытых горных выработок.
- •56.Основные виды деформаций бортов и откосов выработок.
- •57.Второстепенные виды деформаций бортов карьеров.
- •58.Методы расчета устойчивости бортов карьеров и отвалов.
- •59.Сущность оценки устойчивости откосов методом алгеброического сложения сил по круглоцилиндрической поверхности скольжения.
- •60. Сущность оценки устойчивости откосов методом многоугольника сил.
14. Упругие деформации.
Упругая деформация — деформация, исчезающая после прекращения действий внешних сил. При этом тело принимает первоначальные размеры и форму. Под воздействием внешних сил горная порода испытывает изменения линейных размеров, объема или формы, которые называются деформациями. При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.
15. Пластические деформации.
Пластической
или остаточной называется деформация
после прекращения действия вызвавших
ее напряжений. При пластическом
деформировании одна часть кристалла
перемещается по отношению к другой под
действием касательных напряжений. При
снятии нагрузок сдвиг остается, т.е.
происходит пластическая деформация. В
результате развития пластической
деформации может произойти вязкое
разрушение путем сдвига.
Пластическая деформация может протекать под действием касательных напряжений и может осуществляться двумя способами.1. Трансляционное скольжение по плоскостям (рис. 6.5 а). Одни слои атомов кристалла скользят по другим слоям, причем они перемещаются на дискретную величину, равную целому числу межатомных расстояний.В промежутках между полосами скольжения деформация не происходит. Твердое тело не изменяет своего кристаллического строения во время пластической деформации и расположение атомов в элементарных ячейках сохраняетсяПлоскостями скольжения является кристаллографические плоскости с наиболее плотной упаковкой атомов.Это наиболее характерный вид деформации при обработке давлением.2. Двойникование – поворот одной части кристалла в положение симметричное другой его части. Плоскостью симметрии является плоскость двойникования
Двойникование чаще возникает при пластической деформации кристаллов с объемно-центрированной и гексагональной решеткой, причем с повышением скорости деформации и понижением температуры склонность к двойникованию возрастает.
16. Частные случаи ндс.
Плоское напряженное состояние возникает, когда все действующие напряжения параллельны какой-либо одной плоскости. Плоское напряженное состояние характерно для объектов, у которых один из размеров существенно меньше двух других, например для тонких пластин, нагруженных по контуру силами, параллельными их плоскости. В частности, если в гравитационном поле сил в массиве пород вокруг вертикального ствола мысленно выделить тонкий слой, перпендикулярный к его оси, то напряженное состояние пород в выделенном слое можно практически полагать плоским.
Плоская деформация возникает в случае, если перемещения точек деформируемого объема происходят только в одной плоскости. В состоянии плоской деформации находятся средние точки тела, размеры которого в одном каком-либо направлении очень велики, при условии, что не изменяющиеся по значению нагрузки действуют перпендикулярно к этой длинной оси. Например, в гравитационном поле сил в условиях плоской деформации фактически находятся породы вокруг сечения горизонтальной горной выработки.
17. теория наибольших нормальных напряжений. Исторически одна из пер- вых теорий, которую предложил Г. Галилей в 1636 г., основана на гипотезе, что материал разрушается при достижении максимальным нормальным напряжением в некоторой точке предельных значений (прочностна растяже-ние или сжатие).
В качестве первого критерия прочности, называемого обычно первой теорией прочности, был принят критерий наибольших нормальных напряжений, в соответствии с которым причиной разрушения материала считались наибольшее (из трех главных) нормальное напряжение.
Согласно этому критерию, разрушение материала при сложном напряженном состоянии, как и при простом растяжении-сжатии, наступает от действия всего лишь одного напряжения |σ|max, при этом действие двух других напря-жений не учитывается.
Таким образом, эквивалентные напряжения для пластичного материала будут равны наибольшему по модулю главному напряжению σэкв1=!σ!max
а условие прочности запишется следующим образом:
σэкв1≤[σ].
Обратим внимание, что эквивалентные напряжения всегда положительная величина.
Данная теория прочности в настоящее время практически не используется, так как она подтверждается экспериментами лишь для некоторых очень хрупких материалов (камень, кирпич, керамика и т. п.).