Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word 2007.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
260.77 Кб
Скачать

9.Фотометрические методы анализа .Фотоэлектроколометрия.Основы метода.Оптический плотность.Молярный коэффициент светопоглащения

Основой количественного фотометрического анализа является закон Бугера— ЛамбертаБера:  (1) где I0, I – интенсивности потоков света, направленного на по­глощающий раствор и прошедшего через него; с — концентрация вещества, моль/л; l — толщина светопоглощающего слоя, см; ε —молярный коэффициент светопоглощения. Из уравнения (13.1) следует (I/I0) = 10  εlc, откуда lg(I/I0) = –εlc, или –lg(I/I0) = А = εlc, где А — оптическая плотность раствора.

Графически зависимость оптической плотности от концент­рации окрашенного вещества, если выполняется закон Бугера— Ламберта—Бера, выражается прямой, проходящей через начало координат. Эта зависимость соблюдается при выполнении опре­деленных условий (работа с разбавленными растворами, моно­хроматичность падающего света и т. д.).

Молярный коэффициент светопоглощения е зависит от длины волны проходящего света, температуры раствора и природы растворенного вещества и не зависит от толщины поглощающего слоя и концентрации растворенного вещества. Молярный коэффициент светопоглощения отражает индивидуальные свойства окрашенных соединений и является их определяющей характеристикой. Для разных веществ он имеет различное значение. Так, для слабоокрашенных веществ ( таких, как хромат калия) ех 400 - ь500, для сильноокрашенных, например соединений кадмия или цинка с дитизоном, ех достигает значений 85 000 и 94 000 соответственно. 

10.Фотонефелометрический метод анализа.Основы метода.Уровнение Релея.

Нефелометрическое титрование основано на реакциях осаж­дения малорастворимых соединений, образующих устойчивую дисперсионную систему в начальный период осаждения. За ходом реакции образования осадка в разбавленном титруемом растворе наблюдают, измеряя интенсивность света, рассеянного под прямым углом к падающим лучам. Строят график зависи­мости показания прибора от объема прибавленного титранта. Конечную точку находят экстраполяцией участков кривых титрования в области изменения ее наклона 

Интенсивность света, рассеянного во все стороны одной частицей  (1) где I0—интенсивность падающею на частицу света, υ— объем одной частицы или иного рассеивающего центра, n2 и n1—показатели преломления дисперсной фазы и дисперсионной среды соответственно; λ- длина волны; ν– частичная концентрация. Эта формула, полученная Релеем, справедлива для не поглощающих свет (бесцветных) частиц при условии r<<λ.

11. Турбидиметрический метод анализа .основы метода .Закон светопоглощения Бугера –ламберта –Бера.

Турбидиметрическое титрование — установление конечной точки титрования при процессах, сопровождаемых помутнением раствора, как в нефелометрическом титровании, только ход реакции оценивают по интенсивности проходящего, а не рассеян­ного света [99].

В два одинаковых цилиндра помещают отмеренный объем анализируемого раствора и соответственно такой же объем воды. В оба цилиндра вводят одинаковые порции необходимых j реагентов. При этом в исследуемом растворе появляется помут­нение, контрольная проба остается прозрачной. Эту пробу j титруют при взбалтывании стандартным раствором определяемого вещества до уравнивания интенсивностей помутнения в обоих цилиндрах. По израсходованному объему стандартного раствора

и его концентрации вычисляют содержание определяемого ве­щества в анализируемом растворе. Например, для определения малых концентраций хлоридов в качестве реагента применяют раствор AgNC>3, титруют стандартным раствором NaCl

12.спектральные методы анализа.фотометрия пламени .Основы метода . Аналитические линии важнейших элементов.

Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементарный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта

Пламенная фотометрия - оптический метод количественного элементного анализа по атомным спектрам испускания. Для получения спектров анализируемое вещество переводят в атомный пар в пламени. Термическая пламенная фотометрия - разновидность атомного эмиссионного спектрального анализа. В этом методе анализируемый раствор в виде аэрозоля вводят в пламя горючей смеси воздуха или N2O с углеводородами (пропаном, бутаном, ацетиленом). При этом растворитель и соли определяемых металлов испаряются и диссоциируют на своб. атомы. Атомы металлов и образовавшиеся в ряде случаев молекулы их оксидов и гидроксидов возбуждаются и излучают световую энергию. Из всего спектра испускания выделяют характерную для определяемого элемента аналит. линию (с помощью светофильтра или монохроматора) и фотоэлектрически измеряют ее интенсивность, которая служит мерой концентрации данного элемента.

13.качественный и количественный анализ.Уровнение ломакина –шейбе

Качественный анализ — совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе используют легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Реакции должны быть как можно более селективны и высокочувствительны. Качественный анализ в водных растворах основан на ионных реакциях и позволяет обнаружить катионы или анионы. Основоположником качественного анализа считается Р. Бойль, который ввёл представление о химических элементах как о неразлагаемых основных частях сложных веществ и систематизировал все известные в его время качественные реакции. Количественный анализ бывает - гравиметрический ( весовой) - титриметрический (объемный)

Титриметрический метод анализа основан на определении вещества, после взаимодействия с раствором вещества в ходе химической реакции. Объемный метод анализа основан на законе эквивалентов

16.Статистическая обработка результатов анализа .Классификация ошибок.

авершающей стадией количественного анализа химического состава вещества любым методом является статистическая обработка результатов измерений. Она позволяет оценить систематические и случайные погрешности измерений.

Используя приемы математической статистики, можно:

•  рассчитать основные метрологические характеристики методики анализа (оценить воспроизводимость и правильность полученных данных, отбросив результаты, содержащие промахи);

•  определить методом регрессивного анализа вид функциональной зависимости аналитического сигнала от концентрации (содержания) определяемого элемента;

•  рассчитать метрологические характеристики параметров градуировочного графика и результатов анализа;

•  представить результаты статистической обработки в виде компактных табличных данных, позволяющих оценить воспроизводимость и правильность полученных результатов;

• в случае необходимости оценить нижнюю границу определяемых содержаний вещества, предел определения (обнаружения), коэффициент чувствительности. Источник:http://www.znaytovar.ru/new112.html

http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/02_analiticheskaya_khimiya_chast_I/4700

17.Электрохимические методы анализа .Основы метода . Электрохимические группы методов анализа.

Электрохимические методы анализа — группа методов количественного химического анализа, основанные на использовании электролиза.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ,кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрованиекондуктометрическое титрование,потенциометрическое титрованиекулонометрическое титрование)

18.Потенциометрия.основы метода .Зависимость потенциала электрода от активности ионов .Уровнение Нернста.

Потенциометрия — метод определения различных физико-химических величин, основанный на измерении электродвижущих сил (ЭДС) обратимых гальванических элементов. Иначе говоря, зависимость равновесного потенциала электрода от активности концентраций определяемого иона, описываемая уравнением Нернста. Широко применяют потенциометрию ваналитической химии для определения концентрации веществ в растворах (потенциометрическое титрование), для измерения рН.

Зависимость электродного потенциала от активности ионов, относительно которых обратим электрод, позволяет определить их равновесную концентрацию в растворе, а также определить коэффициент активности электролита. Определение активности ионов методом измерения электродного потенциала называется и о н о-м е т р и е и. Этим методом определяют также произведение растворимости труднорастворимых электролитов, степень и константы диссоциации слабых электролитов.

Нернст изучал поведение электролитов при пропускании электрического тока и открыл закон. Закон устанавливает зависимость между электродвижущей силой ( разностью потенциалов ) и ионной концентрацией. Уравнение Нернста позволяет предсказать максимальный рабочий потенциал, который может быть получен в результате электрохимического взаимодействия, когда известны давление и температура. Таким образом, этот закон связывает термодинамику с электрохимической теорией в области решения проблем, касающихся сильно разбавленных растворов.  ,

где

  •  — электродный потенциал,   — стандартный электродный потенциал, измеряется в вольтах;

  •  — универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

  •  — абсолютная температура;

  •  — постоянная Фарадея, равная 96485,35 Кл·моль−1;

  •  — число молей электронов, участвующих в процессе;

  •  и   — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант   и   и перейти от натуральных логарифмов к десятичным, то при   получим

19.потенциометрический метод анализа Классификация электродов.Индикаторные электроды.

Потенциометрические методы анализа основаны на измерении электродвижущих сил (ЭДС):

E=E1-E2

где E - электродвижущая сила (ЭДС);  E1 и E2 - потенциалы электродов исследуемой цепи.

  Потенциал электрода E связан с активностью и концентрацией веществ, участвующих в электродном процессе, уравнением Нернста:

где E0 - стандартный потенциал редокс-системы;    R - универсальная газовая постоянная, равная 8,312 Дж/(моль К);

  T - абсолютная температура, К;   F - постоянная Фарадея, равная 96485 Кл/моль;   n - число электронов, принимающих участие в электродной реакции;   aox, ared - активности соответственно окисленной и восстановленной форм редокс-системы;   [ox], [red] - их молярные концентрации;   Гox, Гred - коэффициенты активности.

По типу электродной реакции все электроды можно разделить на две группы (в отдельную группу выделяются окислительно-восстановительные электроды, которые будут рассмотрены особо в разделе 3.5.5).

Электроды первого рода

К электродам первого рода относятся электроды, состоящие из металлической пластинки, погруженной в раствор соли того же металла. При обратимой работе элемента, в который включен электрод, на металлической пластинке идет процесс перехода катионов из металла в раствор либо из раствора в металл. Т.о., электроды первого рода обратимы по катиону и их потенциал связан уравнением Нернста (III.40) с концентрацией катиона (к электродам первого рода относят также и водородный электрод).

                  (III.40)

Электроды второго рода

Электродами второго рода являются электроды, в которых металл покрыт малорастворимой солью этого металла и находится в растворе, содержащем другую растворимую соль с тем же анионом. Электроды этого типа обратимы относительно аниона и зависимость их электродного потенциала от температуры и концентрации аниона может быть записана в следующем виде:

                       (III.48)

Электроды  сравнения

Для определения электродного потенциала элемента необходимо измерить ЭДС гальванического элемента, составленного из испытуемого электрода и электрода с точно известным потенциалом – электрода сравнения. В качестве примеров рассмотрим водородный, каломельный и хлорсеребряный электроды.

Водородный электрод представляет собой платиновую пластинку, омываемую газообразным водородом, погруженную в раствор, содержащий ионы водорода. Адсорбируемый платиной водород находится в равновесии с газообразным водородом; схематически электрод изображают следующим образом:

Рt, Н2 / Н+

Электрохимическое равновесие на электроде можно рассматривать в следующем виде:

+ + 2е-  ––>  Н2

Потенциал водородного электрода зависит от активности ионов Н+ в растворе и давления водорода; потенциал стандартного водородного электрода (с активностью ионов Н+ 1 моль/л и давлением водорода 101.3 кПа) принят равным нулю. Поэтому для электродного потенциала нестандартного водородного электрода можно записать:

                (III.49)

Каломельный электрод. Работа с водородным электродом довольно неудобна, поэтому в качестве электрода сравнения часто используется более простой в обращении каломельный электрод, величина электродного потенциала которого относительно стандартного водородного электрода точно известна и зависит только от температуры. Каломельный электрод состоит из ртутного электрода, помещенного в раствор КСl определенной концентрации и насыщенный каломелью Hg2Сl2:

Нg / Нg2Сl2, КСl

Каломельный электрод обратим относительно анионов хлора и уравнение Нернста для него имеет вид:

                 (III.50)

Хлорсеребряный электрод. В качестве электрода сравнения используют также другой электрод второго рода – хлорсеребряный, представляющий собой серебряную проволоку, покрытую хлоридом серебра и помещённую в раствор хлорида калия. Хлорсеребряный электрод также обратим относительно анионов хлора:

Аg / АgСl, КСl

Величина потенциала хлорсеребряного электрода зависит от активности ионов хлора; данная зависимость имеет следующий вид:

                 (III.51)

Чаще всего в качестве электрода сравнения используется насыщенный хлорсеребряный электрод, потенциал которого зависит только от температуры. В отличие от каломельного, он устойчив при повышенных температурах и применим как в водных, так и во многих неводных средах.

Индикаторные  электроды.

Электроды, обратимые относительно иона водорода, используются на практике для определения активности этих ионов в растворе (и, следовательно, рН раствора) потенциометрическим методом, основанном на определении потенциала электрода в растворе с неизвестным рН и последующим расчетом рН по уравнению Нернста. В качестве индикаторного электрода может использоваться и водородный электрод, однако работа с ним неудобна и на практике чаще применяются хингидронный и стеклянный электроды.

Хингидронный электрод, относящийся к классу окислительно-восстановительных электродов (см. ниже), представляет собой платиновую проволоку, опущенную в сосуд с исследуемым раствором, в который предварительно помещают избыточное количество хингидрона С6Н4О2·С6Н4(ОН)2 – соединения хинона С6Н4О2 и гидрохинона С6Н4(ОН)2, способных к взаимопревращению в равновесном окислительно-восстановительном процессе, в котором участвуют ионы водорода:

С6Н4О2 + 2Н+ + 2е-  ––>  С6Н4(ОН)2

Хингидронный электрод является т.н. окислительно-восстановительным электродом (см. разд. 3.5.5); зависимость его потенциала от активности ионов водорода имеет следующий вид:

                 (III.52)

Стеклянный электрод, являющийся наиболее распространенным индикаторным электродом, относится к т.н. ионоселективным или мембранным электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов; ионоселективные электроды могут быть обратимы как по катиону, так и по аниону.

Принцип действия мембранного электрода заключается в следующем. Мембрана, селективная по отношению к некоторому иону (т.е. способная обмениваться этим ионом с раствором), разделяет два раствора с различной активностью этого иона. Разность потенциалов, устанавливающаяся между двумя сторонами мембраны, измеряется с помощью двух электродов. При соответствующем составе и строении мембраны её потенциал зависит только от активности иона, по отношению к которому мембрана селективна, по обе стороны мембраны.

Наиболее часто употребляется стеклянный электрод в виде трубки, оканчивающейся тонкостенным стеклянным шариком. Шарик заполняется раствором НСl с определенной активностью ионов водорода; в раствор погружен вспомогательный электрод (обычно хлорсеребряный). Потенциал стеклянного электрода с водородной функцией (т.е. обратимого по отношению к иону Н+) выражается уравнением

               (III.53)

Необходимо отметить, что стандартный потенциал ε°ст  для каждого электрода имеет свою величину, которая со временем изменяется; поэтому стеклянный электрод перед каждым измерением рН калибруется по стандартным буферным растворам с точно известным рН.