
- •1) Основные понятия Электрического тока
- •2) Пассивные электро-радио элементы
- •Режимы работы:
- •3) Простейшие схемы
- •4) Работа полупроводникового диода
- •Вах реального полупроводникового диода
- •Id_max - максимальный ток через диод при прямом включении
- •Piv(Peak Inverse Voltage) - Напряжение пробоя
- •Паразитическая емкость pn-перехода
- •5) Работа биполярного транзистора
- •- Режим отсечки
- •- Барьерный режим
- •6) Работа полевого транзистора
- •7) Схемы включения транзисторов с общим эммитером, с общим коллектором, с общей базой.
- •8) Схемы логических элементов на транзисторах Инверсия функции конъюнкции. Операция и-не (штрих Шеффера)
- •9) Дифференциальный каскад, операционные усилители
- •10) Генератор сигналов
- •Принцип действия
- •11) Усилительный каскад с элементами термостабилизации
- •12) Принцип работы д-триггера, регистры
- •S(set-установка ), r(reset-сброс), режим хранения информации 1-1
- •13) Структура микропроцессора
- •Многоплатные системы со смешанными сигналами
- •Концепция многоточечного заземления
- •Разделение аналоговой и цифровой заземляющих поверхностей
- •Заземление и развязка ис со смешанными сигналами и небольшими цифровыми токами
- •Правильное заземление микросхемы со смешанными сигналами с небольшими цифровыми токами
- •Внимательно отнеситесь к цифровому выходу ацп
- •Точки заземления и развязки
- •Передача тактовых импульсов с цифровой заземляющей поверхности на аналоговую
- •Источники неудач при заземлении системы со смешанными сигналами: применение одноплатной схемы заземления к многоплатной системе
- •Заземление ис со смешанными сигналами: одноплатная система (типичная оценочная/тестовая плата)
- •Выводы: заземление устройств со смешанными сигналами и маленькими цифровыми токами в многоплатных системах
- •Заземление ис со смешанными сигналами с небольшими внутренними цифровыми токами: многоплатная система
- •Выводы: заземление устройств со смешанными сигналами с большими цифровыми токами в многоплатной системе
- •Заземление ис со смешанными сигналами с небольшими внутренними цифровыми токами: многоплатная система
- •Заземление цифровых процессоров обработки сигналов (dsp) с внутренними системами фапч
- •Заземление dsp со встроенной системой фазовой автоподстройки частоты (фапч)
- •Краткая философия заземления
- •Аналоговые и цифровые схемы должны располагаться на печатной плате раздельно
- •Паразитные эффекты печатной платы
- •17) Типы индикаторных устройств (принцип действия) жк, oled, tft, плазма
- •История[править | править исходный текст]
- •Принцип действия[3][править | править исходный текст]
- •Срок хранения данных[править | править исходный текст]
- •Иерархическая структура[править | править исходный текст]
- •Скорость чтения и записи[править | править исходный текст]
- •Особенности применения[править | править исходный текст]
- •Nand-контроллеры[править | править исходный текст]
- •Специальные файловые системы[править | править исходный текст]
- •Применение[править | править исходный текст]
- •Nor[править | править исходный текст]
- •Nand[править | править исходный текст]
- •Некоторые сферы применения[править | править исходный текст]
- •Типы плис[править | править исходный текст] Ранние плис[править | править исходный текст]
- •Pal[править | править исходный текст]
- •Gal[править | править исходный текст]
- •Cpld[править | править исходный текст]
- •Fpga[править | править исходный текст]
- •Триггер Шмидта
- •Способы реализации цап с взвешенным суммированием токов
Паразитическая емкость pn-перехода
Даже если на диод подать напряжение значительно выше Vϒ, он не начнет мгновенно проводить ток. Причиной этому является паразитическая емкость PN перехода, на наполнение которой требуется определенное время. Это сказывается на частотных характеристиках прибора.
5) Работа биполярного транзистора
Б
иполярный транзистор -
электронный
полупроводниковый прибор, предназначенный
для усиления, генерирования и преобразования
электрических сигналов. Транзистор
называется биполярный,
поскольку в работе прибора одновременно
участвуют два типа носителей заряда
– электроны и дырки.
Э
лектрод,
подключённый к центральному слою,
называют базой,
электроды, подключённые к внешним слоям,
называют коллектором и эмиттером.
Главное отличие коллектора от эмитора —
бо́льшая площадь P-n-перехода.
Кроме того, для работы транзистора
необходима малая толщина базы.
Биполярный
транзистор состоит из трёх различным
образом легированных полупроводниковых слоёв:
эмиттера E,
базы B и
коллектора C.
В зависимости от типа проводимости этих
зон различают NPN(эмиттер
− n-полупроводник,
база − p-полупроводник,
коллектор − n-полупроводник)
и PNP транзисторы.
К каждой из зон подведены проводящие
невыпрямляющие контакты. Общая площадь
контакта база-эмиттер значительно
меньше площади контакта коллектор-база
(это делается по двум причинам —
большая площадь перехода коллектор-база
увеличивает вероятность захвата
неосновных носителей заряда из базы в
коллектор и, так как в рабочем режиме
переход коллектор-база обычно включен
с обратным смещением, что увеличивает
тепловыделение, способствует отводу
тепла от коллектора.
Режимы работы биполярного транзистора:
- Нормальный активный режим[
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт) UЭБ>0; UКБ<0 (для транзистора p-n-p типа), для транзистора n-p-n типа условие будет иметь вид UЭБ<0;UКБ>0.
- Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.
- Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
- Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия электронов через переход (для кремниевых транзисторов приблизительно 0,7 В). Режим отсечки соответствует условию UЭБ<0,7 В, или IБ=0.