
- •1) Основные понятия Электрического тока
- •2) Пассивные электро-радио элементы
- •Режимы работы:
- •3) Простейшие схемы
- •4) Работа полупроводникового диода
- •Вах реального полупроводникового диода
- •Id_max - максимальный ток через диод при прямом включении
- •Piv(Peak Inverse Voltage) - Напряжение пробоя
- •Паразитическая емкость pn-перехода
- •5) Работа биполярного транзистора
- •- Режим отсечки
- •- Барьерный режим
- •6) Работа полевого транзистора
- •7) Схемы включения транзисторов с общим эммитером, с общим коллектором, с общей базой.
- •8) Схемы логических элементов на транзисторах Инверсия функции конъюнкции. Операция и-не (штрих Шеффера)
- •9) Дифференциальный каскад, операционные усилители
- •10) Генератор сигналов
- •Принцип действия
- •11) Усилительный каскад с элементами термостабилизации
- •12) Принцип работы д-триггера, регистры
- •S(set-установка ), r(reset-сброс), режим хранения информации 1-1
- •13) Структура микропроцессора
- •Многоплатные системы со смешанными сигналами
- •Концепция многоточечного заземления
- •Разделение аналоговой и цифровой заземляющих поверхностей
- •Заземление и развязка ис со смешанными сигналами и небольшими цифровыми токами
- •Правильное заземление микросхемы со смешанными сигналами с небольшими цифровыми токами
- •Внимательно отнеситесь к цифровому выходу ацп
- •Точки заземления и развязки
- •Передача тактовых импульсов с цифровой заземляющей поверхности на аналоговую
- •Источники неудач при заземлении системы со смешанными сигналами: применение одноплатной схемы заземления к многоплатной системе
- •Заземление ис со смешанными сигналами: одноплатная система (типичная оценочная/тестовая плата)
- •Выводы: заземление устройств со смешанными сигналами и маленькими цифровыми токами в многоплатных системах
- •Заземление ис со смешанными сигналами с небольшими внутренними цифровыми токами: многоплатная система
- •Выводы: заземление устройств со смешанными сигналами с большими цифровыми токами в многоплатной системе
- •Заземление ис со смешанными сигналами с небольшими внутренними цифровыми токами: многоплатная система
- •Заземление цифровых процессоров обработки сигналов (dsp) с внутренними системами фапч
- •Заземление dsp со встроенной системой фазовой автоподстройки частоты (фапч)
- •Краткая философия заземления
- •Аналоговые и цифровые схемы должны располагаться на печатной плате раздельно
- •Паразитные эффекты печатной платы
- •17) Типы индикаторных устройств (принцип действия) жк, oled, tft, плазма
- •История[править | править исходный текст]
- •Принцип действия[3][править | править исходный текст]
- •Срок хранения данных[править | править исходный текст]
- •Иерархическая структура[править | править исходный текст]
- •Скорость чтения и записи[править | править исходный текст]
- •Особенности применения[править | править исходный текст]
- •Nand-контроллеры[править | править исходный текст]
- •Специальные файловые системы[править | править исходный текст]
- •Применение[править | править исходный текст]
- •Nor[править | править исходный текст]
- •Nand[править | править исходный текст]
- •Некоторые сферы применения[править | править исходный текст]
- •Типы плис[править | править исходный текст] Ранние плис[править | править исходный текст]
- •Pal[править | править исходный текст]
- •Gal[править | править исходный текст]
- •Cpld[править | править исходный текст]
- •Fpga[править | править исходный текст]
- •Триггер Шмидта
- •Способы реализации цап с взвешенным суммированием токов
Срок хранения данных[править | править исходный текст]
Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет,[источник не указан 64 дня]хотя гарантия на носители дается не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.
Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.
У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.[11]
По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3-6 месяцев.[12]
Иерархическая структура[править | править исходный текст]
Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно, это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.
Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.
Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы-десятки байт.
Скорость чтения и записи[править | править исходный текст]
Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.
Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.
Особенности применения[править | править исходный текст]
Стремление достичь предельных значений емкости для NAND-устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу.
Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудило разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.
Слабое место флеш-памяти — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартныефайловые системы — то есть стандартные системы управления файлами для широко распространенных файловых систем — часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти. Подробнее про задачу равномерного распределения износа[13] см.: Wear leveling (англ.).
Подробнее о проблемах управления NAND-памятью, вызванных разным размером страниц стирания и записи см.: Write amplification (англ.).