
- •Конспект лекций по курсу: «Безопасность труда»
- •Литература
- •Содержание
- •7. Организация работы по охране труда 54
- •8. Организация обучения, инструктирования и проверки знаний по охране труда рабочих, служащих, специалистов 58
- •1. Основные понятия, термины и определения
- •1.1. Надзор и контроль за соблюдением законодательства по охране труда
- •2. Опасные и вредные производственные факторы
- •2.1. Классификация производственных опасностей
- •2.1.1. Основные положения теории риска
- •2.1.2. Последовательность изучения опасностей
- •2.1.3. Классификация опасных случаев на производстве и причины их возникновения
- •3. Основы производственной гигиены и санитарии. Безопасность на рабочем месте
- •3.1. Эргономические основы охраны труда. Эргономика
- •3.1.1. Система «Человек – Машина – Производственная среда»
- •3.1.2. Организация рабочего места оператора
- •3.2. Работоспособность человека
- •3.3. Метеоусловия в рабочих зонах
- •3.3.1. Биологическое влияние метеоусловий
- •4. Нормирование уровней техногенного воздействия
- •4.1. Нормирование метеоусловий
- •4.2. Контроль метеоусловий
- •4.3. Контроль вредных веществ
- •5. Методы и средства повышения безопасности технических систем и технологических процессов
- •5.1. Вентиляция
- •5.2. Производственное освещение
- •5.3. Защита от шума, ультразвука, инфразвука
- •5.4. Защита от вибраций
- •5.5. Защита от электромагнитных полей
- •5.6. Защита от ионизирующего излучения
- •5.7. Опасные зоны оборудования и средства защиты
- •5.8. Основные требования безопасности к конструкциям подъемно-транспортных машин и механизмов
- •6. Электробезопасность
- •6.1. Причины электротравматизма
- •6.2. Действие электрического тока на организм человека
- •6.3. Факторы, влияющие на исход поражения электрическим током
- •6.4. Влияние частоты и рода тока
- •6.5. Первая помощь при электротравмах
- •6.6. Растекание тока в земле при замыкании
- •6.7. Анализ условий опасности в трехфазных сетях
- •6.8. Классификация помещений по степени опасности поражения электрическим током
- •6.9. Защитные меры в электроустановках
- •6.10. Защитное заземление
- •6.11. Зануление
- •6.12. Защитное отключение
- •6.13. Организация безопасной эксплуатации электроустановок
- •6.14. Категории работ в электроустановках
- •7. Организация работы по охране труда
- •7.1. Государственный и административно-общественный надзор за состоянием от
- •8. Организация обучения, инструктирования и проверки знаний по охране труда рабочих, служащих, специалистов
- •8.1. Ответственность за нарушение законов по охране труда
- •8.2. Инструктажи по безопасности труда
- •8.3. Порядок разработки и утверждения правил и инструкций по от
- •8.4. Расследование несчастных случаев
6.7. Анализ условий опасности в трехфазных сетях
Анализ условий опасности трехфазных электрических сетей практически сводится к определению величины тока, протекающего через человека, и к оценке влияния различных факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, изоляции токоведущих частей от земли и т.п.
В трехфазной трехпроводной сети с изолированной нейтралью силу тока (А), проходящего через тело человека при прикосновении к одной из фаз сети в период ее нормальной работы (рис. 7), определяют следующим выражением в комплексной форме:
IЧ = UФ/(RЧ + Z/3),
где Z - комплекс полного сопротивления одной фазы относительно земли.
Рис. 7. Схема сети с изолированной нейтралью
Если емкость проводов относительно земли мала, т.е. С = 0, а сопротивления изоляции фаз относительно земли равны R1 = R2 = R3 = R, то ток через человека будет равен
При хорошей изоляции (R = 0,5 МОм) ток имеет малое значение и такое прикосновение неопасно. Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного устранения возникших неисправностей. Если в сети имеется большая емкость относительно земли (разветвленные кабельные линии), то однофазное прикосновение будет опасным, несмотря на хорошую изоляцию проводов.
,
где Хс - емкостное сопротивление, равное 1/ωc, Ом;
с - емкость фаз относительно земли.
В сетях с изолированной нейтралью особенно опасно прикосновение к исправной фазе при замыкании на землю любой другой фазы, например второй (7). В этом случае человек включается на полное линейное напряжение.
.
В сетях с заземленной нейтралью сопротивление заземления нейтрали RЗ очень мало по сравнению с сопротивлением утечек R. Поэтому ток, протекающий через человека, при прикосновении определяется фазным напряжением сети UФ, сопротивлением пола и обуви Rпо и сопротивлением заземления нейтрали RЗ (рис.8).
IЧ = UФ/(RЧ + RПО + RЗ).
Рис. 8. Схема сети с заземленной нейтралью
Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период ее нормальной работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью.
При аварийном режиме работы, когда одна из фаз сети замкнута на землю через относительно малое сопротивление RКЗ (фаза 2), и прикосновении человека к одной из двух других фаз, человек оказывается приблизительно под фазным напряжением U2’ (IзRз мало, рис. 8). Это одно из преимуществ сетей с заземленной нейтралью с точки зрения безопасности.
В соответствии с ПУЭ сети напряжением 6-35 кВ выполняются с изолированной нейтралью или с заземлением нейтрали через реактивную катушку в целях уменьшения тока замыкания на землю.
Сети напряжением 110 кВ и выше выполняют с заземлением нейтрали.
Выбор схемы сети, а следовательно, и режима нейтрали источника тока выполняется исходя из технологических требований и из условий безопасности.
По технологическим требованиям при напряжении до 1000 В предпочтение отдается четырехпроводной сети, поскольку она позволяет использовать два рабочих напряжения: линейное и фазное.