Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Энергоснабжение.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.12 Mб
Скачать

3.8. Циклы холодильных машин и тепловых насосов.

В холодильных машинах роль холодного источника выполняют воздух и содержание холодильной камеры, а в тепловых насосах – вода водоемов, окружающий воздух и т.п. Горячим источником теплоты у холодильных машин служит окружающая среда, а у тепловых насосов – отапливаемое помещение. За счет затраты энергии теплота отнимается от холодного источника и передается горячему. В зависимости от потребности можно использовать или охлаждающий или нагревающий эффекты. Установки, позволяющие переходить с режима охлаждения на режим нагрева помещения и наоборот называются кондиционерами воздуха.

Разработан ряд типов холодильных и теплонасосных установок: паровых, воздушных компрессорных, эжекционных, абсорбционных, электрических, магнитных. Рассмотрим принцип работы парокомпрессорной холодильной установки (рис. 3.12).

Рис. 3.12. Принципиальная схема (а) и цикл парокомпрессорной холодильной установки.

1 – комрессор; 2 – конденсатор; 3 – дроссельный вентиль; 4 – испаритель; 5 – охлаждаемое помещение.

Насыщенный пар хладоагента сжимается компрессором 1 и подается в конденсатор 2, где он теряет теплоту q1 в окружающую среду и частично конденсируется. Из конденсатора 2 парожидкостная смесь направляется в дроссельный вентиль 3, где давление и температура смеси падает. После дросселя влажный пар поступает в испаритель 4, расположенный в охлаждаемом помещении 5, где за счет теплоты помещения q2 хладоагент испаряется, забирая из помещения теплоту парообразования.

Термодинамический цикл установки включает следующие процессы: 1-2 – адиабатное сжатие хладоагента в компрессоре; 2-3-4 – отвод теплоты q1 в окружающую среду и конденсация; 4-5 – дросселирование; 5-1 – испарение хладоагента за счет теплоты q2, отбираемой в испарителе.

Холодильный коэффициент парокомрессорной установки определяется по выражению:

, (3.10)

где l1 – работа, затрачиваемая на привод комрессора; h1, h2 – энтальпия парахладоагента на входе и выходе из компрессора; h5 – энтальпия хладоагента, поступающего в испаритель.

Холодильный цикл может использоваться для нагревания теплоносителя, применяемого в системе отопления помещения. Холодильная установка, используемая для подвода теплоты к нагреваемому объекту, называется тепловым насосом. В таких установках теплота перекачивается от холодного источника (вода водоемов, окружающий воздух) к горячему. Работа теплового насоса аналогична работа паровой компрессорной установки.

Из холодного источника воздух (вода) подается в испаритель 4 (рис.3.12), где происходит процесс парообразования хладоагента. Пар хладоагента высокой степени сухости из испарителя направляется в компрессор 1, где адиабатно сжимается. Затем пар поступает в конденсатор, в котором за счет отдачи теплоты воде, циркулирующей в отопительной системе, происходит его конденсация. После конденсатора хладоагент в состоянии насыщения направляется в дроссельный вентиль 3, где дросселируется до малой степени сухости и затем поступает в испаритель 4.

За счет теплоты q2, отбираемой у воды, содержащаяся во влажном паре жидкость испаряется, степень его сухости возрастает.

В рассматриваемом цикле теплота холодного источника (вода из водоема) посредством затраты работы передается горячему источнику (воде отопительной системы). При этом в отопительную систему поступает теплота q1, равная сумме теплоты q2, отбираемой у холодного источника, и работы l1, затраченной для осуществления цикла. Эффективность цикла теплового насоса оценивается коэффициентом использования теплоты

(3.11)

В реальных теплонасосных установках .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]