
- •4. Бинарные соединения водорода. Приведите примеры кислотных, основных и амфотерных гидридов. Продемонстрируйте их свойства на примере реакций с водой.
- •6. Соединения галогенов с металлами (ионные и ковалентные) и неметаллами, в частности, с углеродом (пвх. Фотопласты)
- •7. Хлор. Строение атома, получение и применение хлора. Химические свойства хлора. Хлороводород, хлориды. Хлориды в природе.
- •8. Общая характеристика элементов via группы. Положение в Периодической системе, строение и
- •9. Кислород. Нахождение в природе, получение и применение. Озон. Озоновый щит.
- •10. Оксиды неметаллов. Классификация. Получение и применение.
- •11. Оксиды металлов. Кислотно-основные свойства. Получение и применение.
- •12. Физические (агрегатное состояние) и химические свойства высших оксидов элементов 2 периода и 3 периода.
- •13. Пероксиды. Кислотные и редокс свойства, получение и применение пероксида водорода. Взаимодействие пероксидов н надпероксидов с углекислым газом.
- •14. Сера. Получение, свойства и применение серы. Природные источники. Сероводород. Кислотно-основные и окислительно-восстановительные свойства сероводорода. Сера в природе. Получение Серы.
- •15.Сульфиды металлов. Распространение в природе. Получение сульфидов. Растворимость в воде и кислотах на примере сульфидов натрия и меди II.
- •16. Кислотные и окислительно-восстановительные свойства, получение и применение серной и сернистой кислот и их солей (по 1 примеру). «Кислотные дожди»
- •18. Строение молекулы, физические и химические свойства, получение и применение аммиака. Свойства гидроксида и солей аммония.
- •19. Оксиды азота. Получение и свойства, образование в атмосфере и экологическая роль оксидов азота (II) и (IV)
- •21. Нитраты. Нахождение в и роль нитратов в природе. Получение, свойства, термическая устойчивость.
- •22. Фосфаты в природе. Получение и свойства фосфорной кислоты.
- •23. Общая характеристика элементов ivа группы, положение в Периодической системе, строение и
- •24. Углерод в природе. Аллотропия. Окислительно-восстановительные характеристики. Получение и применение разных аллотропных модификаций.
- •26. Углеводороды.
- •27. Карбонаты. Получение и применение оксида углерода (IV). Сода. Карбонатная буферная система. «Парниковый эффект».
- •28. Кремний.
21. Нитраты. Нахождение в и роль нитратов в природе. Получение, свойства, термическая устойчивость.
Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:
Нитраты большинства остальных металлов при нагревании распадаются на оксид металла, кислород и диоксид азота. Например:
Наконец, нитраты наименее активных металлов (например, серебра, золота) разлагаются при нагревании до свободного металла:
Легко отщепляя кислород, нитраты при высокой температуре являются энергичными окислителями. Их водные растворы, напротив, почти не проявляют окислительных свойств.
Наиболее важное значение имеют нитраты натрия, калия, аммония и кальция, которые на практике называются селитрами.
Нитрат натрия
или
натриевая
селитра, иногда
называемая также чилийской
селитрой, встречается в
большом количестве в природе только
в Чили.
Нитрат калия
,
или калийная
селитра, в
небольших количествах также встречается
в природе, но главным образом получается
искусственно при взаимодействии нитрата
натрия с хлоридом калия.
Обе эти соли используются в качестве удобрений, причем нитрат калия содержит два необходимых растениям элемента: азот и калий. Нитраты натрия и калия применяются также при стекловарении и в пищевой промышленности для консервирования продуктов.
Нитрат
кальция
или
кальциевая
селитра,
получается в больших количествах
нейтрализацией азотной кислоты известью;
применяется как удобрение.
22. Фосфаты в природе. Получение и свойства фосфорной кислоты.
Распространенность в природе. Массовая доля фосфора в земной коре составляет 0,08%. Важнейшими минералами фосфора, встречающимися в природе, являются фторапатит Ca5(PO4)3F и фосфорит Ca3(PO4)2.
Свойства. Фосфор образует несколько аллотропных модификаций, которые заметно различаются по свойствам. Белый фосфор - мягкое кристаллическое вещество. Состоит из молекул P4. Плавится при температуре 44,1°С. Очень хорошо растворим в сероуглероде CS2. Черезвычайно ядовит и легко загорается.
При нагревании белого фосфора образуется Красный фосфор. Он представляет собой смесь нескольких модификаций, которые имеют различную длину молекул. Цвет красного фосфора в зависимости от способа и условий получения может меняться от светло-красного до фиолетового и темно-коричневого. Температура его плавления 585-600°.
Черный фосфор - наиболее устойчивая модификация. По внешнему виду он похож на графит. В отличие от белого фосфора красный и черный фосфор не растворяются в сероуглероде, они не ядовиты и не огнеопасны.
Фосфор химически более активен, чем азот. Химическая активность фосфора зависит от аллотропной модификации, в которой он находится. Так, наиболее активен белый фосфор, а наименее активен черный фосфор.
Получение. Фосфор в промышленности получают из фосфата кальция Ca3(PO4)2, который выделяют из фосфоритов и фторапатитов. Метод получения основан на реакции восстановления Ca3(PO4)2 до фосфора.
В качестве восстановителя соединений фосфора используют кокс (углерод). Для связывания соединений кальция в реакционную систему добавляют кварцевый песок SiO2. Процесс проводят в электопечах (производство относят к электротермическим). Реакция протекает по уравнению:
2Ca3(PO4)2 + 6SiO2 + 10C = 6CaSiO3 + P4 + 10CO
Продукт реакции - белый фосфор. Из-за наличия примесей технический фосфор имеет желтый цвет, поэтому в промышленности его называют желтым фосфором.
Фосфорные удобрения. Фосфор, так же как и азот, является важным элементом для обеспечения роста и жизнедеятельности растений. Растения извлекают фосфор из почвы, поэтому его запасы необходимо восполнять, периодически добавляя фосфорные удобрения. Фосфорные удобрения производят из фосфата кальция, который входит в состав природных фосфоритов и фторапатитов.
Простейшее фосфорное удобрение - фосфоритная мука представляет собой перемолотый фосфорит Ca3(PO4)2. Это удобрение труднорастворимо, оно может усваиваться растениями только на кислых почвах.
Фосфорные кислоты — соединения фосфора в степени окисления +5 общей формулы P2O5·nH2O:
метафосфорная кислота — HPO3
P2O5 + H2O = 2HPO3 (на холоде);
ортофосфорная кислота — H3PO4
HPO3 + H2O = H3PO4 (при кипячении);
пирофосфорная кислота — H4P2O7
2H3PO4 = H4P2O7 + H2O (нагревание при 200°C);
Из ортофосфорной кислоты легко испаряется вода, и она становится концентрированной. При нагревании до 300°C ортофосфорная кислота отдает воду, разлагаясь сначала на пирофосфорную кислоту, затем различные полифосфорные кислоты. При этом образуется гигроскопичная стекловидная масса. Если затем эту массу разбавить водой, то она превратится обратно в ортофосфорную кислоту.
Наибольшее значение имеет ортофосфорная кислота (или просто фосфорная), которую для технических целей получают по реакции
Са3(РО4)2 + 3H2SO4 = 3CaSO4 + 2Н3РО4, и её соли — фосфаты. Н3РО4 применяют для производства удобрений, в пищевой, текстильной промышленности, в медицине, как флюс при пайке. Фосфаты применяют как фосфорные удобрения, в производстве эмалей, стёкол. По «дырообразующей» активности ортофосфорная кислота превосходит серную.