
- •Геометрическое моделирование
- •Содержание
- •Введение
- •1. Общие сведения о компьютерной графике
- •1.1. История развития компьютерной графики
- •1.2. Основные сведения о графических системах
- •1.3. Функции графических систем
- •1.4. Графические данные
- •1.5. Блок-схема графической системы
- •2. Геометрические преобразования
- •2.1. Двумерные преобразования Перенос
- •Масштабирование
- •Поворот
- •2.2. Однородные координаты и матричное представление двумерных преобразований
- •Перенос
- •Масштабирование
- •Поворот
- •2.3. Композиции двумерных преобразований
- •2.6. Преобразования как изменение систем координат
- •3. Алгоритмы растровой графики
- •3.1. Преобразование отрезков из векторной формы в растровую.
- •Пошаговый алгоритм
- •Алгоритм Брезенхэма
- •3.2 Ускорение алгоритма Брезенхэма
- •3.3. Растровая развертка литер
- •3.4. Растровая развертка окружностей Четырехсторонняя симметрия
- •Восьмисторонняя симметрия
- •Алгоритм Брезенхэма для окружностей
- •3.5 Растровая развертка эллипсов Простой метод
- •Инкрементивный метод
- •3.6 Методы устранения ступенчатости растровых изображений
- •3.7 Устранение искажений в растровых дисплеях
- •Для цветных изображений:
- •3.8 Сглаживание линий
- •Алгоритм Ву
- •3.9. Заполнение области Алгоритм построчного сканирования
- •Метод заполнения с затравкой
- •Заполнение линиями
- •3.10. Разложение в растр сплошных многоугольников
- •Когерентность сканирующих строк
- •Когерентность ребер
- •4. Отсечение линий
- •4.1. Алгоритм Коэна-Сазерленда
- •4.2. Алгоритм разбиения средней точкой
- •4.3 Трехмерное отсечение отрезков
- •4.4 Отсечение многоугольников
- •Алгоритм Сазерленда-Ходжмена для отсечения многоугольника.
- •4.5 Отсечение литер
- •5. Проектирование графического диалога
- •5.1. Языковая аналогия
- •Основной принцип
- •Требования к языку диалога
- •5.2. Языковая модель
- •5.3. Принципы проектирования Обеспечение обратной связи
- •Помощь пользователю
- •Возможность исправления ошибок
- •Управление временем отклика
- •Структуризация изображения
- •5.4. Процесс проектирования
- •6. Геометрическое моделирование. Общие сведения.
- •6.1. Геометрическая модель
- •6.2. Основные виды гм
- •Недостатки:
- •Больший объем исходных данных, чем при csg способе,
- •Достоинства:
- •Недостатки:
- •6.3. Требования, предъявляемые к геометрическим моделям
- •6.4. Внутреннее представление, типы данных
- •Двумерная модель
- •Каркасная модель
- •Поверхностная модель
- •Объемная модель
- •7. Двумерное моделирование
- •7.1. Типы данных
- •7.2. Построение базовых элементов
- •Непосредственное задание с использованием выбранного синтаксиса представления
- •С помощью уравнений
- •С помощью ограничений
- •Основные типы ограничений
- •С использованием геометрических преобразований
- •7.3. Примеры моделей Техническое черчение
- •Параметризация
- •Цепное кодирование
- •8. Трехмерное моделирование
- •8.1. Типы данных
- •Базовые элементы:
- •Представление с помощью границ
- •Представление с помощью дерева
- •8.2. Методы описания трехмерных объектов
- •Описание геометрии объекта с использованием алфавитно-цифрового входного языка
- •Описание объекта в режиме графического диалога
- •Получение модели объекта путем ввода эскизов и восстановлением модели по имеющимся проекциям
- •8.3. Методы построения трехмерных моделей Построение кривых и поверхностей
- •Задание гранями (кусочно-аналитическое описание)
- •Кинематический принцип
- •Булевы операции
- •5. Полигональные сетки
- •Явное задание многоугольников
- •Задание многоугольников с помощью указателей на вершины
- •Явное задание ребер
- •9. Описание и характеристика поверхностей.
- •9.1. Описание поверхностей Параметрическое описание
- •Достоинства параметрического описания:
- •Описание неявными функциями
- •Достоинства:
- •Поточечное описание
- •Недостатки:
- •9.2. Характеристики поверхностей Поверхности 1-го порядка
- •Поверхности 2-го порядка
- •Поверхности типа экструзий
- •Фрактальные поверхности
- •9.3. Моделирование деформации трехмерных полигональных поверхностей в режиме реального времени
- •Метод деформации на основе использования неявного задания поверхности объекта
- •Метод деформации плоских протяженных объектов
- •Деформация тела, заданного полигональной сеткой
- •9.4. Триангуляция поверхностей
- •14000 Полигонов 3600 полигонов 800 полигонов 300 полигонов
- •10. Получение реалистичных изображений
- •10.1. Методы создания реалистических изображений
- •Перспективные проекции
- •Передача глубины яркостью
- •10.2. Перспективные изображения
- •11. Проецирование
- •11.1. Основные виды проекций
- •Параллельные проекции
- •Центральные проекции
- •11.2. Математическое описание прямоугольных проекций
- •11.3. Математическое описание косоугольных проекций
- •11.4. Математическое описание перспективной проекции
- •11.5. Задание произвольных проекций. Видовое преобразование.
- •12. Алгоритмы удаления скрытых линий и поверхностей
- •12.1. Общие сведения об удалении скрытых линий и поверхностей
- •12.2. Алгоритм сортировки по глубине
- •12.3. Алгоритм, использующий z-буфер
- •Недостатки:
- •12.4. Алгоритм построчного сканирования
- •12.5. Алгоритм разбиения области
- •12.6. Сравнительная характеристика алгоритмов
- •12.7. Алгоритм плавающего горизонта
- •12.8. Алгоритм Робертса
- •12.9. Алгоритм трассировки лучей
- •12.10. Иерархический z—буфер
- •Переходная когерентность
- •13. Свет
- •13.1. Общие сведения о свете.
- •13.2. Модель освещения.
- •Свойства объектов
- •4 Типа поверхностей:
- •Отражение диффузное
- •Зеркальное отражение
- •Пропускание света (прозрачность)
- •Без освещения с рассеянным светом с рассеянным и диффузным с рассеянным, диффузным и зеркальным
- •Специальные модели
- •13.3. Закраска полигональных сеток.
- •Однотонная закраска
- •Интерполяция интенсивностей (метод Гуро)
- •Интерполяция векторов нормали (метод Фонга)
- •13.4. Тени.
- •Источник на бесконечности
- •Общая постановка задачи:
- •Локальный источник
- •13.5. Фактура. Нанесение узора.
- •Нанесение узора на поверхность. Регулярная текстура.
- •Нанесение узора на поверхность. Стохастическая текстура.
- •13.6. Создание неровностей на поверхности.
- •9130 Полигонов 850 Полигонов с возмущением нормали 850 Полигонов
- •850 Полигонов
- •13.7. Фильтрация текстур.
- •13.8. Полутоновые изображения.
- •14. Трассировка лучей
- •14.1 Метод прямой трассировки
- •Метод обратной трассировки
- •Принцип работы метода трассировки лучей:
- •Реализация метода обратной трассировки
- •Недостатки:
- •15. Использование цвета в компьютерной графике
- •15.2. Цветовые модели
- •Системы смешивания основных цветов
- •Цветовая модель hsv
- •Модель hls
- •Цилиндрическая цветовая модель
- •15.3. Цветовая гармония
- •16. Сжатие изображений
- •16.1. Основные сведения
- •16.2. Алгоритмы сжатия файлов без потерь
- •Алгоритм Хаффмана
- •Алгоритм rle (Run Length Encoding) «сжатие последовательности одинаковых символов»
- •Обрезание хвостов
- •16.3. Сжатие цветных и полутоновых файлов. Сжатие с потерями.
- •Сжатие изображения по стандарту jpeg
- •Фрактальное сжатие изображений
- •Восстановление изображения
- •Преимущества метода фрактального сжатия изображений
- •Аффинное преобразование
- •Список литературы
Поворот
Уравнение поворота (3) можно представить в виде:
. (18)
Полагая
,
имеем:
. (19)
Перемножив, получим:
.
Докажем,
что два последовательных поворота
аддитивны. Если точку
повернуть на угол
в точку
,
а точку
— в точку
при повороте на угол
,
то общий поворот равен
.
Доказательство:
.
Найдем
:
2.3. Композиции двумерных преобразований
Но
обычно при работе с графической системой
объект подвергается сразу нескольким
преобразованиям. Для получения желаемого
результата используют композицию
преобразований, объединяя матрицы
.
К точке более эффективно применять одно
результирующее преобразование, чем ряд
преобразований последовательно.
Рассмотрим,
например, поворот объекта относительно
некоторой точки
.
До этого был рассмотрен поворот относительно начала координат. Для решения этой задачи разобьем ее на три части (три элементарных преобразования):
Перенос точки
в начало координат),
.
Поворот,
.
Рис. 2.5
Перенос точки из начала координат в начальную позицию,
.
Результирующее преобразование имеет вид:
,
или:
Этот пример хорошо иллюстрирует, как применение однородных координат упрощает задачу.
Аналогично, если надо промасштабировать объект относительно точки , а не начала координат, то надо:
Перенести точку в начало координат, .
Масштабировать,
.
Перенести точку назад, .
Результат имеет вид:
Если надо промаштабировать, повернуть и расположить в нужном месте домик, (центром поворота и масштабирования является точка ), то необходимо выполнить:
Перенос точки в начало координат, .
Масштабирование, .
Поворот, .
Перенос точки из начала координат назад, .
В
структуре данных, в которой содержится
это преобразование, могут находиться
масштабный коэффициент
,
угол поворота
и координаты
.
Но может быть и записана матрица
результирующего преобразования:
.
2.4. Матричное представление трехмерных преобразований
Аналогично
тому, как двумерные преобразования
описываются матрицами размером
,
трехмерные могут быть представлены в
виде матриц
.
И тогда трехмерная точка
записывается в однородных координатах
как
,
где
.
Если же
,
то точка представляется в виде
.
Перенос
Трехмерный перенос является простым расширением двумерного:
.
Масштабирование
Расширяется аналогичным образом:
,
или
.
Поворот
Двумерный
поворот, рассмотренный ранее, является
в то же время трехмерным поворотом
вокруг оси
.
.
Матрица поворота вокруг оси :
.
Матрица поворота вокруг оси :
.
При
сложном повороте, он раскладывается на
составляющие:
Рис. 2.6
— поворот
вокруг оси
до совмещения с плоскостью
;
— поворот
вокруг оси
до совмещения с полуосью
.
2.5. Композиция трехмерных преобразований
Путем объединения элементарных трехмерных преобразований можно получить другие преобразования.
Рис. 2.7
Пример.
Преобразовать отрезок
из начальной позиции в конечную таким
образом, чтобы точка
совпала с началом координат, а отрезок
располагается вдоль отрицательной
полуоси
.
На длины отрезков преобразование не воздействует.
Для выполнения этой задачи рассмотрим три шага:
Перенос точки
в начало координат.
Поворот вокруг оси до совмещения отрезка с плоскостью
.
Поворот вокруг оси до совмещения отрезка с отрицательной полуосью .
Шаг
1
Рис. 2.8
Применим
к
:
Шаг
2
Рис. 2.9
Поворот вокруг оси на угол (угол положительный)
,
где
.
Подставляя эти выражения в матрицу поворота, находим:
Шаг 3
Поворот
вокруг оси
(угол отрицательный)
Рис. 2.10
,
Где
.
Результат поворота:
,
теперь отрезок совпадает с осью .