
- •Геометрическое моделирование
- •Содержание
- •Введение
- •1. Общие сведения о компьютерной графике
- •1.1. История развития компьютерной графики
- •1.2. Основные сведения о графических системах
- •1.3. Функции графических систем
- •1.4. Графические данные
- •1.5. Блок-схема графической системы
- •2. Геометрические преобразования
- •2.1. Двумерные преобразования Перенос
- •Масштабирование
- •Поворот
- •2.2. Однородные координаты и матричное представление двумерных преобразований
- •Перенос
- •Масштабирование
- •Поворот
- •2.3. Композиции двумерных преобразований
- •2.6. Преобразования как изменение систем координат
- •3. Алгоритмы растровой графики
- •3.1. Преобразование отрезков из векторной формы в растровую.
- •Пошаговый алгоритм
- •Алгоритм Брезенхэма
- •3.2 Ускорение алгоритма Брезенхэма
- •3.3. Растровая развертка литер
- •3.4. Растровая развертка окружностей Четырехсторонняя симметрия
- •Восьмисторонняя симметрия
- •Алгоритм Брезенхэма для окружностей
- •3.5 Растровая развертка эллипсов Простой метод
- •Инкрементивный метод
- •3.6 Методы устранения ступенчатости растровых изображений
- •3.7 Устранение искажений в растровых дисплеях
- •Для цветных изображений:
- •3.8 Сглаживание линий
- •Алгоритм Ву
- •3.9. Заполнение области Алгоритм построчного сканирования
- •Метод заполнения с затравкой
- •Заполнение линиями
- •3.10. Разложение в растр сплошных многоугольников
- •Когерентность сканирующих строк
- •Когерентность ребер
- •4. Отсечение линий
- •4.1. Алгоритм Коэна-Сазерленда
- •4.2. Алгоритм разбиения средней точкой
- •4.3 Трехмерное отсечение отрезков
- •4.4 Отсечение многоугольников
- •Алгоритм Сазерленда-Ходжмена для отсечения многоугольника.
- •4.5 Отсечение литер
- •5. Проектирование графического диалога
- •5.1. Языковая аналогия
- •Основной принцип
- •Требования к языку диалога
- •5.2. Языковая модель
- •5.3. Принципы проектирования Обеспечение обратной связи
- •Помощь пользователю
- •Возможность исправления ошибок
- •Управление временем отклика
- •Структуризация изображения
- •5.4. Процесс проектирования
- •6. Геометрическое моделирование. Общие сведения.
- •6.1. Геометрическая модель
- •6.2. Основные виды гм
- •Недостатки:
- •Больший объем исходных данных, чем при csg способе,
- •Достоинства:
- •Недостатки:
- •6.3. Требования, предъявляемые к геометрическим моделям
- •6.4. Внутреннее представление, типы данных
- •Двумерная модель
- •Каркасная модель
- •Поверхностная модель
- •Объемная модель
- •7. Двумерное моделирование
- •7.1. Типы данных
- •7.2. Построение базовых элементов
- •Непосредственное задание с использованием выбранного синтаксиса представления
- •С помощью уравнений
- •С помощью ограничений
- •Основные типы ограничений
- •С использованием геометрических преобразований
- •7.3. Примеры моделей Техническое черчение
- •Параметризация
- •Цепное кодирование
- •8. Трехмерное моделирование
- •8.1. Типы данных
- •Базовые элементы:
- •Представление с помощью границ
- •Представление с помощью дерева
- •8.2. Методы описания трехмерных объектов
- •Описание геометрии объекта с использованием алфавитно-цифрового входного языка
- •Описание объекта в режиме графического диалога
- •Получение модели объекта путем ввода эскизов и восстановлением модели по имеющимся проекциям
- •8.3. Методы построения трехмерных моделей Построение кривых и поверхностей
- •Задание гранями (кусочно-аналитическое описание)
- •Кинематический принцип
- •Булевы операции
- •5. Полигональные сетки
- •Явное задание многоугольников
- •Задание многоугольников с помощью указателей на вершины
- •Явное задание ребер
- •9. Описание и характеристика поверхностей.
- •9.1. Описание поверхностей Параметрическое описание
- •Достоинства параметрического описания:
- •Описание неявными функциями
- •Достоинства:
- •Поточечное описание
- •Недостатки:
- •9.2. Характеристики поверхностей Поверхности 1-го порядка
- •Поверхности 2-го порядка
- •Поверхности типа экструзий
- •Фрактальные поверхности
- •9.3. Моделирование деформации трехмерных полигональных поверхностей в режиме реального времени
- •Метод деформации на основе использования неявного задания поверхности объекта
- •Метод деформации плоских протяженных объектов
- •Деформация тела, заданного полигональной сеткой
- •9.4. Триангуляция поверхностей
- •14000 Полигонов 3600 полигонов 800 полигонов 300 полигонов
- •10. Получение реалистичных изображений
- •10.1. Методы создания реалистических изображений
- •Перспективные проекции
- •Передача глубины яркостью
- •10.2. Перспективные изображения
- •11. Проецирование
- •11.1. Основные виды проекций
- •Параллельные проекции
- •Центральные проекции
- •11.2. Математическое описание прямоугольных проекций
- •11.3. Математическое описание косоугольных проекций
- •11.4. Математическое описание перспективной проекции
- •11.5. Задание произвольных проекций. Видовое преобразование.
- •12. Алгоритмы удаления скрытых линий и поверхностей
- •12.1. Общие сведения об удалении скрытых линий и поверхностей
- •12.2. Алгоритм сортировки по глубине
- •12.3. Алгоритм, использующий z-буфер
- •Недостатки:
- •12.4. Алгоритм построчного сканирования
- •12.5. Алгоритм разбиения области
- •12.6. Сравнительная характеристика алгоритмов
- •12.7. Алгоритм плавающего горизонта
- •12.8. Алгоритм Робертса
- •12.9. Алгоритм трассировки лучей
- •12.10. Иерархический z—буфер
- •Переходная когерентность
- •13. Свет
- •13.1. Общие сведения о свете.
- •13.2. Модель освещения.
- •Свойства объектов
- •4 Типа поверхностей:
- •Отражение диффузное
- •Зеркальное отражение
- •Пропускание света (прозрачность)
- •Без освещения с рассеянным светом с рассеянным и диффузным с рассеянным, диффузным и зеркальным
- •Специальные модели
- •13.3. Закраска полигональных сеток.
- •Однотонная закраска
- •Интерполяция интенсивностей (метод Гуро)
- •Интерполяция векторов нормали (метод Фонга)
- •13.4. Тени.
- •Источник на бесконечности
- •Общая постановка задачи:
- •Локальный источник
- •13.5. Фактура. Нанесение узора.
- •Нанесение узора на поверхность. Регулярная текстура.
- •Нанесение узора на поверхность. Стохастическая текстура.
- •13.6. Создание неровностей на поверхности.
- •9130 Полигонов 850 Полигонов с возмущением нормали 850 Полигонов
- •850 Полигонов
- •13.7. Фильтрация текстур.
- •13.8. Полутоновые изображения.
- •14. Трассировка лучей
- •14.1 Метод прямой трассировки
- •Метод обратной трассировки
- •Принцип работы метода трассировки лучей:
- •Реализация метода обратной трассировки
- •Недостатки:
- •15. Использование цвета в компьютерной графике
- •15.2. Цветовые модели
- •Системы смешивания основных цветов
- •Цветовая модель hsv
- •Модель hls
- •Цилиндрическая цветовая модель
- •15.3. Цветовая гармония
- •16. Сжатие изображений
- •16.1. Основные сведения
- •16.2. Алгоритмы сжатия файлов без потерь
- •Алгоритм Хаффмана
- •Алгоритм rle (Run Length Encoding) «сжатие последовательности одинаковых символов»
- •Обрезание хвостов
- •16.3. Сжатие цветных и полутоновых файлов. Сжатие с потерями.
- •Сжатие изображения по стандарту jpeg
- •Фрактальное сжатие изображений
- •Восстановление изображения
- •Преимущества метода фрактального сжатия изображений
- •Аффинное преобразование
- •Список литературы
9. Описание и характеристика поверхностей.
9.1. Описание поверхностей Параметрическое описание
Поверхности, заданные в виде:
,
где u,t – параметры, изменяющиеся в заданных пределах, относятся к классу параметрических.
Для одной фиксированной пары (u,t) можно вычислить положение только одной точки поверхности. Для полного представления всей поверхности необходимо с определенным шагом перебрать множество пар (u,t) из диапазона их изменений, вычисляя при этом X,Y,Z.
Плоскость, проходящая
через точку (x0,y0,z0)
и векторы
и
,
исходящие из этой точки, определяется:
,
где
- проекции
(m=1,2) на оси OX,OY,OZ.
Приведенное уравнение
опишет прямоугольник со сторонами
длиной
и
,
если единичные векторы
и
будут перпендикулярны друг другу, а
параметры u и t
изменяются от 0 до1.
Нормаль
к
плоскости, заданной параметрически,
может быть определена как:
.
Эллипсоид вида:
в параметрическом виде запишется:
,
-долгота,
— ширина.
Нормаль к поверхности эллипсоида:
.
Важны в геометрическом моделировании бикубические параметрические поверхности. Это простейшие поверхности, с помощью которых достигается непрерывность составной функции и ее первых производных. То есть функция из нескольких смежных бикубических участков будет обладать непрерывностью и гладкостью в местах стыка. Они похожи на гладкие изогнутые четырехугольники, представление о которых могут дать листы металла, бумаги. Они могут описывать любые геометрические формы.
Недостатки параметрического описания:
трудоемкость описания,
большие вычислительные затраты (нужны численные методы вычисления).
параметрическое описание подразумевает, что исходной позицией светового луча, строящего изображение, является точка на объекте. Это затрудняет применение алгоритмов компьютерного синтеза изображений, предполагающих иную начальную позицию луча, например метода трассировки лучей. Это ведет к ухудшению изображений: отсутствие теней, прозрачности и зеркального отражения соседних объектов.
Достоинства параметрического описания:
Возможность передачи геометрической формы очень сложных поверхностей, например винтообразной улитки. Она представляет собой сумму 3-х векторов: первый - вокруг которого завивается улитка, конец которого очерчивает спираль, а начало скользит по первому, третий - начало которого скользит по спирали, а конец вращается вокруг спирали.
Описание тора, симметричного относительно оси OZ и плоскости XOY:
,
где
- радиус кольцевого “баллона” тора;
R – расстояние от центра тора до оси “баллона”;
изменяется
в пределе
;
изменяется в пределе .
Неявное
описание типа
этих и многих других поверхностей
невозможно.
Приспособленность к физическим процессам управления резцом в станках с ЧПУ. Резец должен вытачивать деталь, двигаясь в пространстве по законам, заданным в параметрической модели.
Параметрические поверхности легко ограничиваются в пространстве пределами изменения параметров. Например, наружная поверхность дольки апельсина в виде 1/8 шара радиуса r:
,
где
,
.