
- •Ответы на вопросы
- •Световые волны и их основные характеристики. Световые лучи. Нормальная и лучевая скорости. Интенсивность света. Корпускулярно – волновой дуализм.
- •Центрированная оптическая система. Главные точки и плоскости. Формула оптической системы.
- •Лупа. Микроскоп, Телескоп.
- •Цуг волн (радиоимпульс). Спектр цуга. Эффективная ширина спектра излучения.
- •Принцип Гюйгенса. Законы отражения и преломления света как следствия принципа Гюйгенса. Атмосферная рефракция.
- •Формулы Френеля.
- •Интерференция световых волн. Когерентные волны. Интегрирующее действие приемников света.
- •Получение когерентных волн. Сходственные (сопряженные) цуги.
- •Интерференционная картина от двух когерентных источников. Оптическая длина пути. Оптическая разность хода. Таутохронизм.
- •11.Временная когерентность. Время и длина когерентности.
- •Пространственная когерентность. Радиус когерентности.
- •Интерференция света при отражении от тонких плоскопараллельных пленок. Полосы равного наклона
- •Интерференция света при отражении от клиновидной пластинки. Полосы равной толщины.
- •Кольца Ньютона
- •Многолучевая интерференция. Эталон Фабри – Перо.
- •17. Интерферометр Майкельсона.
- •Волновые фронты пучков, образующих интерференционную картину
- •18.Применение интерференции в технике.
- •19.Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля и дифракция Фраунгофера.
- •20.Метод зон Френеля. Зонная пластинка (пластинка Соре).
- •21.Дифракция Френеля на круглом отверстии и диске.
- •22.Дифракция Фраунгофера на щели. Дифракционная расходимость светового пучка.
- •23.Дифракционная решётка.
- •24.Спектральные приборы и их основные характеристики.
- •25.Разрешающая сила объектива оптического прибора.
- •26.Дифракция на двумерных структурах.
- •27.Голография.
- •29. Поляризация света при отражении и преломлении. Закон Бюстера и причины отклонения от него. Понятие об эллипсометрии.
- •31. Построение Гюйгенса для одноосного кристалла.
- •33. Искусственная оптическая анизотропия, обусловленная механическими напряжениями , электрическими и магнитными полями.
- •36.Бугера-Ламберта-Бера закон
- •39. Тепловое излучение. Законы Кирхгофа, Вина и Стефана-Больцмана. Формула Рэлея-Джинса.
- •40. Формула Рэлея-Джинса:
- •41. Формула Планка для теплового излучения.
- •43. Внешний фотоэффект и его законы. Формула Эйнштейна.
- •45. Кванты света (фотоны). Опыты Бете. Давление света. Опыты Лебедева.
- •46. Эффект Комптона.
- •47. Опыты Резерфорда. Ядерная модель атома. Боровская теория атома водорода. Постоянная Ридберга.
- •48. Гипотеза де Бройля. Опыт Дэвиссона-Джермера. Вероятностный смысл волн де Бройля.
- •49. Волновая функция частицы. Уравнение Шредингера. Собственные значения энергии и собственные функции.
- •50. Спонтанное излучение. Вынужденное излучение и его свойства.
- •51. Лазеры. Трехуровневая и четырехуровневая схемы получения инверсии заселенности. Свойства лазерного излучения. Применение лазеров.
- •52. Состав и характеристики атомных ядер. Дефект массы и энергия связи ядра.
- •53. Радиоактивность. Виды радиоактивности. Закон радиоактивного распада.
20.Метод зон Френеля. Зонная пластинка (пластинка Соре).
Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля.
Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.
Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.
Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.
Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.
ЗОННАЯ ПЛАСТИНКА (пластинка Соре) - экран (в простейшем случае - стеклянная пластинка), состоящий из системы чередующихся прозрачных и непрозрачных концентрич. колец, ширина к-рых подобрана так, чтобы расстояние от краёв соседних прозрачного и непрозрачного колец (рис.) до точки наблюдения F, называемой фокусом 3. п., изменялось на длину полуволны; NF-MF=l/2, где l - длина волны. Т. о., 3. п. делит падающую на неё волну на кольцевые Френеля зоны .Фазы волн, излучаемых соответствующими точками N иМ каждых двух соседних зон, противоположны. Если между точечным источником и точкой наблюдения расположить 3. п. с k прозрачными кольцами, соответствующими нечётным зонам
Френеля (чётные зоны - непрозрачные), то действие всех выделенных (прозрачных) зон сложится и амплитуда колебаний в точке наблюдения возрастёт в 2k раз; то же получится, если прозрачными будут чётные зоны, но фаза суммарной волны будет иметь противоположный знак. Если на стеклянную пластинку вместо непрозрачного слоя нанести прозрачный слой, вызывающий сдвиг фазы на l/2, то интенсивность света в точке наблюдения возрастёт в 4k раз. Т. о., 3. п. увеличивает освещённость в точке наблюдения подобно собирательной (положительной) линзе. Но хроматич. аберрация такой системы приблизительно в 20 раз больше, чем у линз из стекла типа "крон". Примером 3. п. может служить голограмма точечного источника; особенностью голограммы как 3. п. является то, что переход от тёмного поля к светлому осуществляется не скачком, а плавно, приблизительно по синусоидальному закону. Аналогичные устройства могут быть созданы и в диапазоне радиоволн, где благодаря значительно большим длинам волн реализация описанного принципа упрощается и оказывается возможным создание направленных излучателей типа зонных антенн. Л. Н. Капорский.