
- •Экзаменационный билет №1
- •1 Понятие о геоинформатике.
- •2 Структура и составные части гис.
- •3 Место гис среди других автоматизированных систем.
- •Экзаменационный билет №2
- •1 Общие принципы построения моделей данных в гис.
- •2 Классификационные задачи.
- •3 Общие сведения о системном построении информационной системы.
- •Экзаменационный билет №3
- •1 Модель "сущность-связь". Сетевые модели. Прочие модели.
- •2 Координатные данные.
- •3 Формы представления моделей.
- •Экзаменационный билет №4
- •1 Векторные и растровые модели.
- •2 Трехмерные модели.
- •3 Системный анализ гис.
- •Экзаменационный билет №5
- •1 Автоматизированные справочно-информационные системы (асис).
- •2 Специализированные гис.
- •3 Гис применяемые в маркшейдеском деле. Экзаменационный билет №6
- •1 Гис для публикации карт и работы с ними в Интернете.
- •2 Геоинформационное программное обеспечение.
- •3 Применение гис.
- •Экзаменационный билет №7
- •1 Полнофункциональные гис.
- •2 Общие сведения о Credo.
- •3 Точечные и линейные объекты.
- •Экзаменационный билет №8
- •1 Общая характеристика credo mix.
- •2 Сбор пространственных данных с помощью систем спутникового
- •3 Гис для задач городского хозяйства.
- •Экзаменационный билет №9
- •1 Взаимодействие credo_mix с другими прикладными программами.
- •2 Языки и библиотеки для разработки гис-приложений.
- •3 Проекции и проекционные преобразования.
- •Экзаменационный билет №10
- •1 Цифровые модели местности.
- •2 Общая классификация программного обеспечения.
- •3 Вопросы точности координатных и атрибутивных данных.
- •Экзаменационный билет №11
- •1 Аспекты рассмотрения моделей данных.
- •2 Применение экспертных систем в гис. Характеристика эс.
- •3 Основные принципы функционирования асни.
- •Экзаменационный билет №12
- •1 Основные понятия моделей данных.
- •2 Базовые модели данных, используемые в гис.
- •Прочие модели. Бинарная модель дает представление о проблемной области в виде бинарных отношений, характеризуемых триадой: объект, атрибут, значение.
- •3 Общие сведения о Credo.
- •Экзаменационный билет №13
- •1 Современные компьютерные технологии в гоном деле.
- •2 Классификация комьютерных программ используемые в горном деле.
- •3 Полнофункциональные гис.
- •Экзаменационный билет №14
- •1 Программное обеспечение для обработки данных дистанционного зондирования Земли.
- •2 Анализ сетей.
- •3 Основные виды моделирования.
- •Экзаменационный билет №15
- •1 Точечные и линейные объекты.
- •2 Модели пространственных данных.
- •3 Ввод, переработка и хранение данных.
- •Экзаменационный билет №16
- •1 Задачи и назначения гис.
- •2 Определение положения точек на поверхности Земли.
- •3 Атрибутивное описание.
- •Экзаменационный билет №17
- •1 Основные типы координатных моделей.
- •2 Особенности моделирования в гис.
- •3 Основные функции комплекса Credo.
- •Экзаменационный билет №18
- •1 Информационная основа credo_mix.
- •2 Электронные карты.
- •3 Построение схемы обобщённой гис.
- •Экзаменационный билет №19
- •1 Интегрированные системы.
- •2 Системы автоматизированного проектирования.
- •3 Применение гис программы Surpak на горнодобывающих предприятиях Казахстана.
- •Экзаменационный билет №20
- •1 Система Surpak, преимущества системы.
- •3 Взаимоотношение между координатными моделями.
- •Экзаменационный билет №21
- •1 Геометрический анализ.
- •2 Состав комплекса Credo (Credo dat, Credo ter, Credo geo, Credo pro, Credo mix, Credo lin, Cad Credo).
- •3 Интегрированная система Datamine.
- •Экзаменационный билет №22
- •1 Создание цифровой ситуации в credo_mix.
- •3 Системы автоматизированного проектирования.
- •Экзаменационный билет №23
- •1 Системный анализ гис.
- •2 Процессы Datamine для оценки запасов.
- •3 Гис программы применяемые в маркшейдерском деле.
- •Экзаменационный билет №24
- •1 Общие сведения о системном построении информационной системы.
- •2 Задачи и назначения гис применяемые в маркшейдерском деле.
- •3 Ввод, переработка и хранение данных.
- •Экзаменационный билет №25
- •1 Геоинформационное программное обеспечение.
- •2 Влияние ошибок при вводе данных.
- •3 Интегрированные системы применяемые в горном деле.
3 Формы представления моделей.
Выделяют табличные и графовые формы представления моделей.
Табличная форма дает представление модели или ее характеристик в виде одной или совокупности взаимосвязанных таблиц. При этом данные в ячейках таблицы не могут заноситься произвольно, они подчиняются определенным правилам, в частности, по столбцам располагают типизированные данные. Примером табличного представления модели кроме таблицы может служить логическая запись, которая представляет собой верхнюю строку таблицы,
Графовая форма основана на построении модели в виде графической схемы, называемой графом. Эта схема включает элементы графа, называемые вершинами (узлами) и ребрами (дугами). В отличие от произвольно нарисованной схемы графовая модель, как и табличная, строится по определенным правилам. В частности, каждое ребро может быть ориентировано, если определен путь от одной вершины к другой, и не ориентировано, что соответствует возможному пути от одной вершины к другой в обоих направлениях. Простейший пример ориентированного графа — вектор в трехмерном пространстве, а неориентированного графа — кривая пути из одной точки в другую. Кроме вершин и ребер существуют другие элементы, значение которых не столь существенно.
Экзаменационный билет №4
1 Векторные и растровые модели.
Основой визуального представления данных при помощи ГИС – технологий служит так называемая графическая среда. Основу графической среды и соответственно визуализации базы данных ГИС составляют векторные и растровые модели.
Векторные модели используют в качестве, атомарной модели последовательность координат, образующих линию.
Линией называют границу, сегмент, цепь или дугу.
В ГИС форме представления координатных данных соответствуют два основных подкласса моделей - векторные и растровые (ячеистые или мозаичные). Возможен класс моделей, которые содержат характеристики как векторов, так и мозаик. Они называются гибридными моделями.
Векторные модели данных строятся на векторах, занимающих часть пространства в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество.
В векторной форме легче осуществляются операции с линейными и точечными объектами, например, анализ сети - разработка маршрутов движения по сети дорог, замена условных обозначений.
В растровых моделях дискретизация осуществляется наиболее простым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. При этом каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности объекта. В ячейке модели содержится одно значение, усредняющее характеристику участка поверхности объекта. В теории обработки изображений эта процедура известна под названием пикселизация.
2 Трехмерные модели.
В настоящее время существуют два основных способа представления трехмерных моделей в ГИС.
Первый способ, назовем его псевдотрехмерным, основан на том, что создается структура данных, в которых значение третьей координаты Z (обычно высота) каждой точки (X, Y) записывается в качестве атрибута. При этом значение 2 может быть использовано в перспективных построениях для создания изображений трехмерных представлений.
Второй способ - создание истинных трехмерных представлений - структур данных, в которых местоположение фиксируется в трех измерениях (X, Y, Z).
Истинные трехмерные представления позволяют:
• наглядно изображать (визуализировать) объемы;
• решать задачи, связанные с моделированием объемов;
• решать новый класс задач - разработка трехмерных ГИС;
• производить синтез трехмерных структур.
Оба способа трехмерных представлений пространственной информации имеют несколько важных приложений:
• проектирование инженерных и промышленных; сооружений (шахты, карьеры, плотины, водохранилища);
• моделирование геологических процессов;
• моделирование трехмерных потоков в газообразных и жидкостных средах.
Применение трехмерных моделей позволяет строить новые модели и расширяет возможности ГИС как системы принятия решений. С использованием методов трехмерной графики можно по-новому решать задачи проектирования жилой застройки, размещения объектов бытового и хозяйственного назначения в муниципальных округах, создавать новые типы трехмерных условных знаков и т.д.