
- •Экзаменационный билет №1
- •1 Понятие о геоинформатике.
- •2 Структура и составные части гис.
- •3 Место гис среди других автоматизированных систем.
- •Экзаменационный билет №2
- •1 Общие принципы построения моделей данных в гис.
- •2 Классификационные задачи.
- •3 Общие сведения о системном построении информационной системы.
- •Экзаменационный билет №3
- •1 Модель "сущность-связь". Сетевые модели. Прочие модели.
- •2 Координатные данные.
- •3 Формы представления моделей.
- •Экзаменационный билет №4
- •1 Векторные и растровые модели.
- •2 Трехмерные модели.
- •3 Системный анализ гис.
- •Экзаменационный билет №5
- •1 Автоматизированные справочно-информационные системы (асис).
- •2 Специализированные гис.
- •3 Гис применяемые в маркшейдеском деле. Экзаменационный билет №6
- •1 Гис для публикации карт и работы с ними в Интернете.
- •2 Геоинформационное программное обеспечение.
- •3 Применение гис.
- •Экзаменационный билет №7
- •1 Полнофункциональные гис.
- •2 Общие сведения о Credo.
- •3 Точечные и линейные объекты.
- •Экзаменационный билет №8
- •1 Общая характеристика credo mix.
- •2 Сбор пространственных данных с помощью систем спутникового
- •3 Гис для задач городского хозяйства.
- •Экзаменационный билет №9
- •1 Взаимодействие credo_mix с другими прикладными программами.
- •2 Языки и библиотеки для разработки гис-приложений.
- •3 Проекции и проекционные преобразования.
- •Экзаменационный билет №10
- •1 Цифровые модели местности.
- •2 Общая классификация программного обеспечения.
- •3 Вопросы точности координатных и атрибутивных данных.
- •Экзаменационный билет №11
- •1 Аспекты рассмотрения моделей данных.
- •2 Применение экспертных систем в гис. Характеристика эс.
- •3 Основные принципы функционирования асни.
- •Экзаменационный билет №12
- •1 Основные понятия моделей данных.
- •2 Базовые модели данных, используемые в гис.
- •Прочие модели. Бинарная модель дает представление о проблемной области в виде бинарных отношений, характеризуемых триадой: объект, атрибут, значение.
- •3 Общие сведения о Credo.
- •Экзаменационный билет №13
- •1 Современные компьютерные технологии в гоном деле.
- •2 Классификация комьютерных программ используемые в горном деле.
- •3 Полнофункциональные гис.
- •Экзаменационный билет №14
- •1 Программное обеспечение для обработки данных дистанционного зондирования Земли.
- •2 Анализ сетей.
- •3 Основные виды моделирования.
- •Экзаменационный билет №15
- •1 Точечные и линейные объекты.
- •2 Модели пространственных данных.
- •3 Ввод, переработка и хранение данных.
- •Экзаменационный билет №16
- •1 Задачи и назначения гис.
- •2 Определение положения точек на поверхности Земли.
- •3 Атрибутивное описание.
- •Экзаменационный билет №17
- •1 Основные типы координатных моделей.
- •2 Особенности моделирования в гис.
- •3 Основные функции комплекса Credo.
- •Экзаменационный билет №18
- •1 Информационная основа credo_mix.
- •2 Электронные карты.
- •3 Построение схемы обобщённой гис.
- •Экзаменационный билет №19
- •1 Интегрированные системы.
- •2 Системы автоматизированного проектирования.
- •3 Применение гис программы Surpak на горнодобывающих предприятиях Казахстана.
- •Экзаменационный билет №20
- •1 Система Surpak, преимущества системы.
- •3 Взаимоотношение между координатными моделями.
- •Экзаменационный билет №21
- •1 Геометрический анализ.
- •2 Состав комплекса Credo (Credo dat, Credo ter, Credo geo, Credo pro, Credo mix, Credo lin, Cad Credo).
- •3 Интегрированная система Datamine.
- •Экзаменационный билет №22
- •1 Создание цифровой ситуации в credo_mix.
- •3 Системы автоматизированного проектирования.
- •Экзаменационный билет №23
- •1 Системный анализ гис.
- •2 Процессы Datamine для оценки запасов.
- •3 Гис программы применяемые в маркшейдерском деле.
- •Экзаменационный билет №24
- •1 Общие сведения о системном построении информационной системы.
- •2 Задачи и назначения гис применяемые в маркшейдерском деле.
- •3 Ввод, переработка и хранение данных.
- •Экзаменационный билет №25
- •1 Геоинформационное программное обеспечение.
- •2 Влияние ошибок при вводе данных.
- •3 Интегрированные системы применяемые в горном деле.
Экзаменационный билет №17
1 Основные типы координатных моделей.
Геометрически информация, определена как совокупность наборов точек, линий, контуров и площадей, имеющих метрические значения, отражающие трёхмерную реальность.
Будучи частью (классом) общей модели данных в ГИС, координатные данные определяют класс координатных моделей.Основные типы координатных моделей
Рассмотрим в качестве примера набор данных в системе ГеоДраф:
• точка - пара координат Х, У;
• отрезок - линия, соединяющая две точки;
• вершина (вертекс) - начальная или конечная точка отрезка;
• дуга (линия) - упорядоченный набор связных отрезков (или вершин);
• узел – начальная или конечная вершина дуги;
• нормальный узел - узел, принадлежащий трем (и более) дугам.
• висячая дуга - дуга, имеющая висячий узел;
• замкнутая дуга - дуга у которой совпадают начальная и конечная вершины (у такой дуги имеется только один узел);
• полигон - единичная область, ограниченная (находящаяся внутри) замкнутой дугой или упорядоченным набором связных дуг, которые образуют замкнутый контур;
• слой - покрытие, рассматриваемое в контексте его содержательной определенности (растительность, рельеф, административное деление и т.п.) или его статуса в среде редактора (активный слой, пассивный слой);
2 Особенности моделирования в гис.
Исходные пространственные данные и данные, полученные в процессах обработки ГИС, могут иметь различные наборы форматов. Тип формата чаще всего определяется используемыми программными средствами, что особенно характерно при сборе данных по разным технологиями Преобразование форматов осуществляется с помощью специальных программ - конвертеров.
Векторизация. Данные могут иметь векторное или растровое представление. Между векторными и растровыми изображениями имеется существенное различие, характерное именно для ГИС. Растровые изображения отображают поля данных, т.е. носят полевой характер. Векторные изображения в ГИС, как правило, отображают геоинформационные объекты, т.е. носят объектный характер.
Растрово-векторное преобразование применяется при интерпретации сканированных аэрокосмических изображений (выделение и оконтуривание на них однородных областей), в методах дигитализации цифровых растровых картографических изображений, при обработке данных, полученных с цифровых фотокамер или от видеосъемки, и т.п.
Проекции и проекционные преобразования. Координаты точек пространственных объектов используют для указания местоположения объектов на земной поверхности. Поверхность Земли имеет сложную форму. При составлении карт пространственное положение точек отображается в плоском (двухмерном) представлении.
Группа математических процедур ГИС, осуществляющая переход от одной картографической проекции к другой или от пространственной системы к картографической проекции, носит название проекционных преобразований. Эта группа реализуется методами моделирования, образуя единый блок. В этот блок входят и различные процедуры обработки пространственных данных для получения новых проекций на основе исходных. Эти процедуры включают и простые операции пересчета координат пространственных объектов (поворота, смещения, масштабирования и т. п.), более сложные (связанные, например, с "укладкой" объектов в систему опорных точек) и самую сложную подгруппу операций (трансформация картографических проекций).
Поликонические проекции (policonicprojection).В них параллели изображаются дугами эксцентрических окружностей с центрами на среднем (прямолинейном) меридиане или его продолжении, а меридианы - кривыми, симметричными относительно среднего меридиана.
Частным случаем поликонических проекций являются собственно поликонические проекции, для которых принимаются дополнительные условия, и круговые проекции с меридианами в виде дуг эксцентрических окружностей.
К поликоническим проекциям в широком понимании относятся проекция Таича (определялась аналитически) и проекции Гинзбурга (получены численными методами).
Геометрический анализ. Программные средства ГИС позволяют выполнять ряд операций геометрического анализа для векторных и растровых моделей. Для векторных моделей такими операциями являются: определение расстояний, длин ломаных линий, координат центроидов полигонов, расчет площадей векторных объектов, трансформирование точек объекта. Особо следует отметить процедуры поиска точек пересечения линий.
Для растровых моделей технологии ГИС обеспечивают выполнение следующих операций геометрического анализа: идентификацию зон, вычисление площадей зон, расчет периметров зон, определение расстояния от границы зоны, определение формы зоны, трансформирование растрового слой.
Для векторных моделей, каждая из которых отображает отдельный объект, процедуры геометрического анализа во многом используют традиционную геометрию и выполняются без каких-либо предварительных преобразований как алгоритмы прямого счета. Кроме того, например, площадь и периметр элемента могут входить в число обязательных атрибутов полигонов.
Для растровых моделей, которые создаются не по объектным признакам, проведению практически любой геометрической процедуры должны предшествовать анализ и выделение необходимого объекта (распознавание образа).
Оверлейные операции. Особенностью цифровой карты является возможность ее организации в виде множества слоев (покрытий или карт-подложек).
Сущность оверлейных операций состоит в наложении разноименных слоев (двух или более) с генерацией производных объектов, возникающих при их геометрическом наслоении, и наследованием их атрибутов. Наиболее распространены операции оверлея двух полигональных слоев.
Площадь и периметр элемента могут входить в число атрибутов полигонов. Их значения используются в операциях удаления границ полигонов, принадлежащих к одинаковым классам, и в оверлейных операциях.
Построение буферных зон. Буферная зона может создаваться вокруг точки, линии или ареала. В результате образуется новый ареал, включающий исходный объект.
Операции построения буферной зоны применяются в транспортных системах, лесном хозяйстве, при создании охранных зон вокруг озер и вдоль водотоков, при определении зон загрязнения вдоль дорог, зоны влияния существующей или проектируемой сети транспортных коммуникаций, связанной с изменением экологической обстановки, и т.д.
Методология создания буферных зон использует общие принципы пространственного анализа ГИС, в частности набор операций ГИС, при которых из уже имеющихся пространственных объектов формируются новые. Новые объекты могут иметь атрибуты старых, из которых они образованы.
Этот подход взят за основу при формировании буферных зон. Иногда ширину буферной зоны можно определить исходя из признака объекта. Ширина (радиус для точечных объектов) зоны может быть постоянной или зависеть от значения соответствующего атрибута объекта. В последнем случае имеет место буферизация со "взвешиванием".
Анализ сетей. Операции анализа сетей позволяют решать оптимизационные задачи на сетях. Они основаны на использовании векторных моделей, на координатном и атрибутивном представлении линейных пространственных структур и на введении в них топологических характеристик (моделей).
Координатные векторные пространственные объекты ( точки, линии, полигоны, ареалы ) определены в векторных моделях наборами упорядоченных пар координат х, у:
• точка: (х, у);
• линия: (х1, у1), (х2, у2), . . . ,(xn, уn);
• полигон: (х1, у1), (х2, у2), . . . ,(хn, уn).
Это обеспечивает идентичность цифрового представления указанных трех пространственных объектов, позволяя использовать групповые процедуры пространственного анализа.
Цифровое моделирование рельефа. Оно заключается в построении модели базы данных, которая бы наилучшим образом отображала рельеф исследуемой местности. Эти процессы связаны с трехмерным моделированием и с задачами пространственного анализа.
Координаты точек цифровой модели рельефа (ЦМР) расположены на земной поверхности, имеющей сложную форму. Для подробного отображения такой поверхности требуется очень большое число точек, поэтому в ЦМЗ используют различные математические модели поверхности.
В свою очередь, это определяет проблему выбора оптимального аналитического описания или набора функций для отображения рельефа местности. При этом может возникнуть задача учета возможных картографических представлений и проекций.