
- •Вопрос 2. Водородная связь.
- •Вопрос 3. Донорно-акцепторная связь.
- •Вопрос 4. Типы химических связей. Ионная связь.
- •Вопрос 6. Полярность ковалентной связи. Дипольные моменты.
- •Вопрос 8. Полярность и поляризуемость.
- •Вопрос 9. Природа ковалентной связи.
- •Вопрос 11. Основные положения метода молекулярных орбиталей.
- •Вопрос 10. Основные методы положения валентных связей.
- •Вопрос 17. Локализация и делокализация связей. Гибридизация.
- •Вопрос 18. Природа межмолекудярного взаимодействия. Сила Ван-дер-Вальса. Оценка прочности ван дер вальсового взаимодействия.
- •Вопрос 21. Периодичность свойств химических элементов: сродство к электрону, энергии ионизации, атомные и ионные радиусы.
- •Вопрос 23. Периодическая система Менделеева. Периоды, группы.
Вопрос 23. Периодическая система Менделеева. Периоды, группы.
Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона Д.И. Менделеева. Прообразом Периодической системы химических элементов послужила таблица, составленная Д.И. Менделеевым 1 марта 1869 г. В 1870 г. В 1870 г. Менделеев назвал систему естественной, а в 1871 г. - периодической.
Число элементов в современной Периодической системе почти вдвое больше, чем было известно 60-х годах XIX в. (на сегодняшний день - 113), однако ее структура со времен Менделеева почти не изменилась. Хотя за всю историю Периодической системы было опубликовано более 50 различных вариантов ее изображения, наиболее популярными являются предложенные Менделеевым короткопериодная и длиннопериодная формы.
Главный принцип построения Периодической системы - выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы - 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство.
Номер группы в Периодической системе определяет число валентных электронов а атомах элементов. При этом в группах, обозначенных буквой А, содержатся элементы, в которых идет заселениеs- и р-подуровней - s-элементы (IA- и IIA-группы) и р-элементы (IIIA-VIIIA-группы), а в группах, обозначенной буквой Б, находятся элементы, в которых заселяются d-подуровни - d-элементы. Поскольку в каждом большом периоде должно находиться по 10 d-элементов (у которых заполняются пять d-орбиталей), то Периодическая система должна содержать 10 соответствующих групп. Однако традиционно используется нумерация групп лишь до восьми, поэтому число групп d-элементов расширяется за счет введения дополнительных цифр - это IБ-VIIБ, VIIIБ0, VIIIБ1 и VIIIБ2-группы. Для f-элементов номеров групп не предусмотрено. Обычно их условно помещают в ячейки Периодической системы, отвечающие лантану (лантаноиды) и актинию (актиноиды). Символы лантаноидов и актиноидов выносятся за пределы Периодической системы в виде отдельных рядов.
Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами.
Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня
Порядок формирования периодов связан с постепенным заселением энергетических подуровней электронами. Последовательность заселения определяется принципом минимума энергии, принципом Паули и правилом Гунда.
Периодическое изменение свойств элементов в периоде объясняется последовательностью заполнения электронами уровней и подуровней в атомах при увеличении порядкового номера элемента и заряда ядра атома.
Каждому элементу (кроме f-элементов) в Периодической системе соответствуют вполне определенные координаты: номер периода и номер группы. По этим координатам можно не только найти элемент в таблице Д.И. Менделеева, но и построить его электронную конфигурацию, учитывая физический смысл значения чисел, соответствующих номерам периода и группы, а также наличие буквы в номере группы, определяющей принадлежность элемента к секциям s- и p-элементов или d-элементов.
Группы, периоды, энергетические уровни и подуровни
Каждый период начинается элементом, в атоме которого впервые появляется электрон с данным значением n (водород или щелочной элемент), и заканчивается элементом, в атоме которого до конца заполнен уровень с тем же n (благородный газ). Первый период содержит всего два элемента, второй и третий - по восемь (малые периоды). Начиная с четвертого, периоды называют большими, так как в них появляются d- и f-элементы: четвертый и пятый периоды включают по 18 элементов, шестой - 32. Седьмой период еще не завершен, но он, как и шестой, должен содержать 32 элемента.
Последовательность заселения электронами атомных орбиталей можно определить с помощью правила, сформулированное им в 1951 г. русским агрохимиком В.М. Клечковским. Это правило часто называют правилом "n + l". Оно отражает зависимость энергии атомных орбиталей от главного и орбитального квантовых чисел.
Согласно правилу Клечковского, заселение электронами энергетических уровней и подуровней в нейтральных атомах в основном состоянии происходит с увеличением порядкового номера элемента в порядке увеличения суммы главного и орбитального квантовых чисел (n + l), а при одинаковом значении (n + l) − в порядке увеличения главного квантового числа n.
Правило Клечковского имеет исключения. В отдельных случаях электроны, не закончив полное заселение s-атомных орбиталей, могут появиться на d-орбиталях или вместо 4f-атомных орбиталей заселять 5d-орбитали.
Например, у хрома и молибдена (VIБ-группа) на 4s- и 5s-атомных орбиталях, соответственно, имеется только по одному электрону, а остальные пять заполняют 3d- и 4d-атомные орбитали, так как наполовину заполненные d-подуровни имеют высокую устойчивость, и электронная конфигурация (n−1)d5ns1 оказывается для атомов хрома и молибдена более выгодной, чем (n−1)d4ns2.
Особо устойчив также целиком заполненный d-подуровень, поэтому электронной конфигурации валентных электронов атомов меди, серебра и золота (IБ-группа) (n−1)d10ns1 будет соответствовать более низкая энергия, чем (n−1)d9ns2.
Вертикальная периодичность
Вертикальная периодичность заключается в повторяемости свойств простых веществ и соединений в вертикальных столбцах Периодической системы. Это основной вид периодичности, в соответствии с которым все элементы объединены в группы. Элементы одной группы имеет однотипные электронные конфигурации. Химия элементов и их соединений обычно рассматривается на основе этого вида периодичности.
Вертикальная периодичность обнаруживается и в некоторых физических свойствах атомов, например, в энергиях ионизации Ei (кДж/моль):
IA-группа |
IIA-группа |
VIIIA-группа |
Li 520 |
Be 900 |
Ne 2080 |
Na 490 |
Mg 740 |
Ar 1520 |
K 420 |
Ca 590 |
Kr 1350 |
Горизонтальная периодичность
Горизонтальная периодичность заключается в появлении максимальных и минимальных значений свойств простых веществ и соединений в пределах каждого периода. Она особенно заметна для элементов VIIIБ-группы и лантаноидов (например, лантаноиды с четными порядковыми номерами более распространены, чем с нечетными).
В таких физических свойствах, как энергия ионизации и сродство к электрону, также проявляется горизонтальная периодичность, связанная с периодическим изменением числа электронов на последних энергетических подуровнях:
Элемент |
Li |
Be |
B |
C |
N |
O |
F |
Ne |
Ei |
520 |
900 |
801 |
1086 |
1402 |
1314 |
1680 |
2080 |
Ae |
−60 |
0 |
−27 |
−122 |
+7 |
−141 |
−328 |
0 |
Электронная формула (валентные электроны) |
2s1 |
2s2 |
2s22p1 |
2s22p2 |
2s22p3 |
2s22p4 |
2s22p5 |
2s22p6 |
Число неспаренных электронов |
1 |
0 |
1 |
2 |
3 |
2 |
1 |
0 |
Диагональная периодичность
Диагональная периодичность - повторяемость свойств простых веществ и соединений по диагоналям Периодической системы. Она связана с возрастание неметаллических свойств в периодах слева направо и в группах снизу вверх. Поэтому литий похож на магний, бериллий на алюминий, бор на кремний, углерод на фосфор. Так, литий и магний образуют много алкильных и арильных соединений, которые часто используют в органической химии. Бериллий и алюминий имеют сходные значения окислительно-восстановительных потенциалов. Бор и кремний образуют летучие, весьма реакционноспособные молекулярные гидриды.
Диагональную периодичность не следует понимать как абсолютное сходства атомных, молекулярных, термодинамических и других свойств. Та, в своих соединениях атом лития имеет степень окисления (+I), а атом магния - (+II). Однако свойства ионов Li+ и Mg2+ очень близки, проявляясь, в частности, в малой растворимости карбонатов и ортофосфатов.
В
результате объединения вертикальной,
горизонтальной и диагональной
периодичности появляется так называемая
звездная периодичность. Так, свойства
германия напоминают свойства окружающих
его галлия, кремния, мышьяка и олова. На
основании таких "геохимических звезд"
можно предсказать присутствие элемента
в минералах и рудах.
Вторичная периодичность
Многие свойства элементов в группах изменяются не монотонно, а периодически, особенно для элементов IIIA-VIIA-групп. Такое явление носит название вторичной периодичности. Так, германий по своим свойствам больше похож на углерод, чем на кремний. Известно, что силан реагирует с гидроксид-ионами в водном растворе с выделением водорода, а метан и герман не взаимодействуют даже с избытком гидроксид-ионов.
Подобные аномалии в химическом поведении элементов наблюдаются и в других группах. Так, например, для элементов 4-го периода, находящихся в VA-VIIA-группах, (As, Se, Br) характерна малая устойчивость соединений в высшей степени окисления. В то время как для фосфора и сурьмы известны пентафториды, пентахлориды и пентаиодиды, в случае мышьяка до сих получен только пентафторид. Гексафторид селена менее устойчив, чем соответствующие фториды серы и теллура. В группе галогенов хлор(VII) и иод(VII) образуют устойчивые кислородсодержание анионы, тогда как пербромат-ион, синтезированный лишь в 1968 г., является очень сильным окислителем.
Вторичная периодичность связана, в частности, с относительной инертностью валентных s-электронов за счет так называемого "проникновения к ядру", поскольку увеличение электронной плотности вблизи ядра при одном и том же главном квантовом числе уменьшается в последовательности ns > np > nd > nf.
Поэтому элементы, которые в Периодической системе стоят непосредственно после элементов со впервые заполненным p-, d- или f-подуровнем, характеризуются понижением устойчивости их соединений в высшей степени окисления. Это натрий и магний (идут после элементов с впервые заполненным р-подуровнем), р-элементы 4-го периода от галлия до криптона (заполнен d-подуровень), а также послелантаноидные элементы от гафния до радона.
Периодическое изменение атомных радиусов
Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый радиус, полагая, что в сфере этого радиуса заключена бóльшая часть электронной плотности (более 90%).
Радиусы атомов элементов находятся в периодической зависимости от их порядкового номера.
В периодах по мере увеличения заряда ядра радиусы атомов, в общем, уменьшаются, что связано с усилением притяжения внешних электронов к ядру. Наибольшее уменьшение атомных радиусов наблюдается у элементов малых периодов. В группах элементов радиусы атомов, в общем, увеличиваются, так как растет число электронных слоев. Таким образом, в изменении атомных радиусов элементов просматриваются разные виды периодичности: вертикальная, горизонтальная и диагональная.
Небольшие размеры атомов элементов второго периода приводят к устойчивости кратных связей, образованных при дополнительном перекрывании р-орбиталей, ориентированных перпендикулярно межъядерной оси. Так, диоксид углерода − газообразные мономер, молекула которого содержит две двойные связи, а диоксид кремния − кристаллический полимер со связями Si−O. При комнатной температуре азот существует в виде устойчивых молекул N2, в которых атомы азота соединены прочной тройной связью. Белый фосфор состоит из молекул Р4, а черный фосфор представляет собой полимер.
По-видимому, для элементов третьего периода образование нескольких одинарных связей выгоднее формирования одной кратной связи. Вследствие дополнительного перекрывания р-орбиталей для углерода и азота характерны анионы СО32− и NO3− (форма треугольника), а для кремния и фосфора более устойчивы тетраэдрические анионы SiO44− и PO43−.