
- •1. 1 Принцип работы уравновешенного моста (схема, вывод уравнения равновесия моста, принцип работы
- •1.2 Милливольтметр (конструкция, принцип работы).
- •1.3. Расходомеры переменного перепада давления (конструкция, принцип измерения).
- •2. 1 Манометрические термометры (газовые, жидкостные, конденсацион-ные)
- •2.2 Логометр (конструкция, принцип работы).
- •2.3 Расходомеры постоянного перепада давления (конструкция, принцип измерения и работы)
- •3.1 Электронные схемы лабораторного и автоматического потенциометра (схемы, принципы работы)
- •3.2 Амперметры и вольтметры (конструкции, принципы работы).
- •3.3 Расходомеры переменного перепада давления и уровня (конструкции, принципы работы).
- •7.1. Принцип работы неуравновешенного моста (схема, вывод уравнения равновесия моста, принцип работы).
- •7.2. Милливольтметр (конструкция, принцип работы)
- •7.3. Тензометрические и пьезоэлектрические приборы для измерения давления (конструкции, принципы измерения и работы).
- •8.1.Дифференциально-трансформаторная система передачи информации (схема, конструкция, принцип работы).
- •8.2. Логометр (конструкция, принцип работы).
- •8.3.Термокондуктометрические,ионизационные и радиоизотопные приборы для измерения давления (конструкции, принципы работы).
- •9.1. Емкостные и ультразвуковые уровнемеры (конструкции, принципы работы).
- •9.3.Термокондуктометрические газоанализаторы (конструкция, принцип работы).
- •13.1Сельсинные машины (схема подключения, конструкция, принцип работы).
- •13.3 Пневмоэлектрические преобразователи (конструкция, принцип работы).
- •14.1 Термометры сопротивления (принцип работы, разновидности, характеристики).
- •14.2 Фотоэлектрические пирометры (конструкция, принцип работы).
- •14.3 Электропневматические преобразователи (конструкция, принцип работы).
- •15.1 Тензодатчики и пьезодатчики (конструкции, из каких материалов изготавливаются, принципы работы и измерения).
- •22.1.Уровнемеры для сыпучих материалов(конструкции, принципы работы)
- •22.2.Кондуктометрический анализатор с двухэлектродной ячейкой и температурной компенсацией(схема, конструкция, принцип работы)
- •22.3.Плотномеры поплавковые, весовые,гидростатические(конструкции, схемы, принцип работы)
- •23.3.Цифровые вольтметры
- •24.1.Манометрические жидкостные термометры.
- •25 Билет
- •1.Буйковые уровнемеры (схема, принцип работы).
- •2.Высокочастотные резонансные уровнемеры (схемы, конструкции, принцип работы).
- •3.Радиоизотопные плотномеры (схема, конструкция, принцип работы).
- •1. Физико-химические основы потенциометрического метода измерения рН (конструкции каломельного и вспомогательного электродов, измерительная схема, принцип работы).
- •2. Вискозиметры (конструкция, принцип работы).
- •3. Автоматический рефрактометр (схема, конструкция, принцип работы).
- •1. Газоанализатор инфракрасного поглощения (схема, конструкция, принцип работы).
- •2. Ваттметры (конструкция, принцип работы)
- •3. Термокондуктометрический газоанализатор (конструкция, принцип работы).
2.3 Расходомеры постоянного перепада давления (конструкция, принцип измерения и работы)
Расход жидкости или газа можно измерять и при постоянном перепаде давлений. Для сохранения постоянного перепада давлений при изменении расхода через сужающее устройство необходимо автоматически изменять площадь его проходного сечения. Наиболее простой способ — автоматическое изменение площади проходного сечения в ротаметре.
Ротаметр представляет собой вертикальную конусную трубку, в которой находится поплавок. Измеряемый поток Q проходя через ротаметр снизу вверх, создает перепад давлений до и после поплавка. Этот перепад давлений, в свою очередь создает подъемную силу, которая уравновешивает вес поплавка.
Если расход через ротаметр изменится, то изменится и перепад давлений. Это приведет к изменению подъемной силы и, следовательно, к нарушению равновесия поплавка. Поплавок начнет перемешаться. А так как трубка ротаметра конусная, то при этом будет изменяться площадь проходного сечения в зазоре между поплавком и трубкой, в результате произойдет изменение перепада давлений, а следовательно, и подъемной силы. Когда перепад давлений и подъемная сила снова вернутся к прежним значениям, поплавок уравновесится и остановится.
Таким образом, каждому значению расхода через ротаметр Q соответствует определенное положение поплавка. Так как для конусной трубки площадь кольцевого зазора между ней и поплавком пропорциональна высоте его подъема, то шкала ротаметра получается равномерной.
3.1 Электронные схемы лабораторного и автоматического потенциометра (схемы, принципы работы)
Принцип действия автоматических потенциометров основан на компенсационном (или нулевом) методе измерения термоЭДС. Сущность этого метода состоит в компенсации (уравновешивании) неизвестной ЭДС известным напряжением, создаваемым на прецизионном резисторе дополнительным источником постоянного тока. Принципиальная схема, поясняющая компенсационный метод измерения термоЭДС, приведена на рис. 4. Условно в схеме можно выделить два электрических контура : контур рабочего тока I1 и контур термопреобразователя, состоящего из ТП, нуль-прибора НП, сопротивления внешней цепи (Rтп,Rл,Rнп) и Rа¢а участка резистора Rр . Нуль-прибор включен в цепь ТП. Сам преобразователь подключен таким образом, что его ток I2 на участке а-а¢ резистора Rр совпадает с направлением рабочего тока I1 (резисторы Rтп,Rл,Rнп на схеме условно не показаны). Перемещая подвижный контакт резистора Rр, можно найти такое его положение, при котором ток I2 в контуре ТП будет равен нулю.
П. пост. и перем. тока существенно различаются. В П. пост. тока (рис.) измеряемая эдс Ех уравновешивается (компенсируется) известным регулируемым напряжением Uк. О моменте равновесия судят по показаниям гальванометра Г (ток через гальванометр должен отсутствовать).
Принципиальная схема потенциометра пост. тока: ЕN и Ех— известная и измеряемая эдс; 1р — рабочий ток; Uк — известное регулируемое напряжение; И — измерит. прибор (амперметр).
3.2 Амперметры и вольтметры (конструкции, принципы работы).
Амперметр – это прибор, предназначенный для измерения силы тока, протекающего в электрической цепи. Прибор включается в измеряемую цепь последовательно.
Принцип действия самых распространённых в амперметрах систем измерения:
1) В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.
2) В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
3)В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.
-
схема включения
Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.
Вольтметр - это прибор, измеряющий величину напряжения или электродвижущей силы. Вольтметр в цепи подключается параллельно элементу на котором измеряется напряжение
По
виду измеряемой величины цифровые
вольтметры делятся на: вольтметры
постоянного тока, переменного тока
(средневыпрямленного или среднего
квадратического значения), импульсные
вольтметры — для измерения параметров
видео- и радиоимпульсных сигналов и
универсальные вольтметры, предназначенные
для измерения напряжения постоянного
и переменного тока, а также ряда других
электрических и неэлектрических величин
(сопротивления, температуры и прочее).
Измеряемое напряжение U, подается на входное устройство(высокоомный делитель) на резисторах. С делителя напряжение поступает на усилитель постоянного тока и далее — на измерительный механизм. Делитель и усилитель постоянного тока ослабляют или усиливают напряжение до значений, необходимых для нормальной работы измерительного механизма. Одновременно усилитель обеспечивает согласование высокого сопротивления входной цепи прибора с низким сопротивлением катушки измерительного механизма. Диапазон, измеряемых напряжений постоянного тока — от десятков милливольт до нескольких киловольт.