
- •1. 1 Принцип работы уравновешенного моста (схема, вывод уравнения равновесия моста, принцип работы
- •1.2 Милливольтметр (конструкция, принцип работы).
- •1.3. Расходомеры переменного перепада давления (конструкция, принцип измерения).
- •2. 1 Манометрические термометры (газовые, жидкостные, конденсацион-ные)
- •2.2 Логометр (конструкция, принцип работы).
- •2.3 Расходомеры постоянного перепада давления (конструкция, принцип измерения и работы)
- •3.1 Электронные схемы лабораторного и автоматического потенциометра (схемы, принципы работы)
- •3.2 Амперметры и вольтметры (конструкции, принципы работы).
- •3.3 Расходомеры переменного перепада давления и уровня (конструкции, принципы работы).
- •7.1. Принцип работы неуравновешенного моста (схема, вывод уравнения равновесия моста, принцип работы).
- •7.2. Милливольтметр (конструкция, принцип работы)
- •7.3. Тензометрические и пьезоэлектрические приборы для измерения давления (конструкции, принципы измерения и работы).
- •8.1.Дифференциально-трансформаторная система передачи информации (схема, конструкция, принцип работы).
- •8.2. Логометр (конструкция, принцип работы).
- •8.3.Термокондуктометрические,ионизационные и радиоизотопные приборы для измерения давления (конструкции, принципы работы).
- •9.1. Емкостные и ультразвуковые уровнемеры (конструкции, принципы работы).
- •9.3.Термокондуктометрические газоанализаторы (конструкция, принцип работы).
- •13.1Сельсинные машины (схема подключения, конструкция, принцип работы).
- •13.3 Пневмоэлектрические преобразователи (конструкция, принцип работы).
- •14.1 Термометры сопротивления (принцип работы, разновидности, характеристики).
- •14.2 Фотоэлектрические пирометры (конструкция, принцип работы).
- •14.3 Электропневматические преобразователи (конструкция, принцип работы).
- •15.1 Тензодатчики и пьезодатчики (конструкции, из каких материалов изготавливаются, принципы работы и измерения).
- •22.1.Уровнемеры для сыпучих материалов(конструкции, принципы работы)
- •22.2.Кондуктометрический анализатор с двухэлектродной ячейкой и температурной компенсацией(схема, конструкция, принцип работы)
- •22.3.Плотномеры поплавковые, весовые,гидростатические(конструкции, схемы, принцип работы)
- •23.3.Цифровые вольтметры
- •24.1.Манометрические жидкостные термометры.
- •25 Билет
- •1.Буйковые уровнемеры (схема, принцип работы).
- •2.Высокочастотные резонансные уровнемеры (схемы, конструкции, принцип работы).
- •3.Радиоизотопные плотномеры (схема, конструкция, принцип работы).
- •1. Физико-химические основы потенциометрического метода измерения рН (конструкции каломельного и вспомогательного электродов, измерительная схема, принцип работы).
- •2. Вискозиметры (конструкция, принцип работы).
- •3. Автоматический рефрактометр (схема, конструкция, принцип работы).
- •1. Газоанализатор инфракрасного поглощения (схема, конструкция, принцип работы).
- •2. Ваттметры (конструкция, принцип работы)
- •3. Термокондуктометрический газоанализатор (конструкция, принцип работы).
23.3.Цифровые вольтметры
Вольтметр - это прибор, предназначенный для определения напряжения в электрических цепях.
По виду измеряемой величины цифровые вольтметры делятся на: вольтметры постоянного тока, переменного тока, импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтметры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопротивления, температуры и прочее).
Принцип
работы цифровых измерительных приборов
основан на дискретном и цифровом
представлении непрерывных измеряемых
величин.
В
электронике в основном оперируют
Вольтметрами (В), миллиВольтметрами
(мВ), а такжке микроВольтметрами (мкВ).
Следовательно в зависимости от
измеряемого тока приборы делятся на
вольтметры (РV1), милливольтметры (РV2) и
макровольтметры (РV3), которые обозначаются
на принципиальных схемах следующим
образом:
24.1.Манометрические жидкостные термометры.
Жидкозаполненные (жидкостные), система которых заполнена жидкостью.В приборах этого типа вся система термометра заполняется жидкостью под некоторым начальным давлением. К жидкостям, применяемым для заполнения, предъявляются следующие требования: возможно больший коэффициент объемного расширения, высокая теплопроводность, небольшая теплоемкость и химическая инертность к материалу термометра.Для заполнения обычно применяют ртуть (в интервале температур от .—30 до +600° С) и ксилол (в интервале температур от —40 до +200° С).Для предохранения жидкости от закипания в термометре обеспечивается начальное давление порядка 1,47—1,96 МН/м2 (15—20 кгс/см2).Благодаря большой теплопроводности жидкости термобаллон термометра сравнительно быстро принимает температуру измеряемой среды. Однако по этой же причине погрешности от колебания температуры окружающей среды у жидкостных термометров больше, чем у газовых. Температурные погрешности подсчитываются по тем же формулам, что и для газовых термометров.При значительной длине капилляра для жидкостных термометров необходимо применять компенсационные устройства.
1 – термобаллон, 2 – основной капилляр, 3 - дополнительный капилляр, 4 и 5 - соответственно основная и вспомогательная спиральные трубчатые пружины Рисунок 3 – Схема температурной компенсации жидкостного манометрического термометра.На рисунке показан один из вариантов компенсационного устройства, у которого рядом с основным капилляром есть дополнительный (компенсационный) капилляр, один конец которого (у термобаллона), запаян, а другой соединен со вспомогательной (компенсационной) пружиной. Оба капилляра и обе пружины заполняются одной и той же рабочей жидкостью и имеют одинаковые характеристики. С изменением температуры окружающей среды давление жидкости в обоих капиллярах и в обеих пружинах изменяется, вследствие чего вспомогательная пружина, раскручиваясь или скручиваясь, действует в направлении, противоположном действию основной пружины, и тем самым исключается влияние температуры окружающей среды на показания прибора.Для жидкостных термометров следует также учитывать погрешность, вызванную различным положением термобаллона относительно манометра по высоте; погрешность эту можно скомпенсировать установкой стрелки или пера прибора при помощи механического корректора на нуль или начало шкалы после монтажа термометра на месте.Жидкость практически несжимаема, поэтому изменение атмосферного давления не влияет на показания прибора.
24.2.Бесконтактный высокочас-тотный кондуктометрический анализатор.
Бесконтактные измерительные ячейки применяются при анализе жидких сред, содержащих взвеси, коллоиды, пленкообразующие и кристаллизующиеся компоненты. Различают измерительные ячейки для бесконтактной низкочастотной (промышленная и звуковая частота до 1000 Гц) и высокочастотной кондуктометрии (частоты 105—108 Гц)
.
На рис. 11.15, д показана схема бесконтактной высокочастотной ячейки. Анализируемая жидкость поступает в трубку 3 из диэлектрика, на которую снаружи намотаны обмотки двух трансформаторов - возбуждающего Tp1 и измерительного Тр2. Обмотка 1 трансформатора Tp1 подключена к источнику переменного тока. Раствор анализируемого вещества в трубке 3 образует замкнутый жидкостной виток и является вторичной обмоткой трансформатора Tp1. Под действием ЭДС, наводимой первичной обмоткой 1 в замкнутом витке, в нем проходит ток. Сила этого тока пропорциональна электропроводности анализируемой жидкости. Для измерительного трансформатора Тр2 жидкостный виток служит первичной обмоткой. ЭДС, наводимая в его вторичной обмотке 2, зависит от силы тока, проходящего по жидкостному витку, т.е.определяется электропроводностью анализируемой жидкости.
24.3.Струнные преобразователи
Измерительный
преобразова-тель давления,
перемещений, расхода, усилия и т. п. в
электрический сигнал (ток, напряжение,
частоту).
С.
П. делятся на однострунные и
дифференциальные, имеющие две идентичные
струны (рис.).
Дифференциальное включение струн
позволяет значительно уменьшить влияние
окружающей среды (температуры, давления)
на результаты преобразования входного
параметра.
Схемы устройства струнных преобр-ей: а — однострунного; б — дифференциального; 1 — струна; 2 — корпус; 3 — выходной преобразователь (U — напряжение питания, е — эдс на выходе преобразователя); 4 — мембрана; 5 — пружина; 6 — выходной сигнал; р и F — измеряемые параметры (давление и усилие).